Folding-Refolding of Ferritin as Template in Design of Nanoclusters of Copper and Manganese Oxides

Article Preview

Abstract:

Bio-templates such as proteins, lipids offer rich structural and functional diversity for the synthesis of nanoparticles by controlling their shape, size and orientation. In this work we have exploited a pH dependent folding-refolding feature of Horse Spleen Apoferritin (HsAFr) to synthesize copper and manganese oxide nanoparticles in a controlled manner. Two methods of preparation were used in this study. In the first method, Copper Sulphate (100 mM) and Manganese Chloride (4.8 mM) have been incubated with the protein and the pH dynamically adjusted for homogeneous incorporation of the metal ions into the HsAFr shell. The second study involved the incorporation of Cu2+ and Mn2+ inside HsAFr cavity and subsequent designing of nanoclusters of the respective oxides. UV, fluorescence and far-UV circular dichroism (far-UV CD) spectroscopic techniques have been used to study the mineralization effect of the metal inside the HsAFr cavity. Size determination carried out using XRD suggested an average size ranging from 20-30 nm. The EPR of the nanoclusters show that incorporation of Mn2+ leads to a characteristic magnetoferritin behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-41

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mat. Chem. 14 (2004) 2161–2175.

DOI: 10.1039/b402025a

Google Scholar

[2] F. Sonvico, C. Dubernet, P. Colombo, P. Couvreur, Metallic colloid nanotechnology, applications in diagnosis and therapeutics, Curr. Pharm. Des. 11 (2005) 2091–2105.

DOI: 10.2174/1381612054065738

Google Scholar

[3] F.C. Meldrum, V.J. Wade, D.L. Nimmo, B.R. Heywood, S. Mann, Synthesis of inorganic nanophase materials in supramolecular protein cages, Nature 349 (1991) 684-687.

DOI: 10.1038/349684a0

Google Scholar

[4] T. Douglas, D.P.E. Dickson, S. Betteridge, J. Charnock, C.D. Garner, S. Mann, Synthesis and Structure of an Iron(III) Sulfide-Ferritin Bioinorganic Nanocomposite, Science 269 (1995) 54-57.

DOI: 10.1126/science.269.5220.54

Google Scholar

[5] T. Douglas, M. Young, Host–guest encapsulation of materials by assembled virus protein cages, Nature 393 (1998) 152-155.

DOI: 10.1038/30211

Google Scholar

[6] M. Knez, M. Sumser, A.M. Bittner, C. Wege, H. Jeske, T.P. Martin, K. Kern, Spatially selective nucleation of metal clusters on the Tobacco Mosaic Virus, Adv. Funct. Mater. 14 (2004) 116-124.

DOI: 10.1002/adfm.200304376

Google Scholar

[7] E. Dujardin, C. Peet, G. Stubbs, J.N. Culver, S. Mann, Organization of metallic nanoparticles using Tobacco Mosaic Virus templates, Nano Lett. 3 (2003) 413-417.

DOI: 10.1021/nl034004o

Google Scholar

[8] W. Shenton, S. Mann, H. Colfen, A. Bacher, M. Fischer, Synthesis of nanophase iron oxide in Lumazine Synthase Capsids, Angew. Chem. 113 (2001) 456-459; Angew. Chem. Int. Ed. 40 (2001) 442-445.

DOI: 10.1002/1521-3773(20010119)40:2<442::aid-anie442>3.0.co;2-2

Google Scholar

[9] D. Ishii, K. Kinbara, Y. Ishida, N. Ishii, M. Okochi, M. Yohda, T. Aida, Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles, Nature 423 (2003) 628-632.

DOI: 10.1038/nature01663

Google Scholar

[10] P.M. Harrison, P. Arosio, The ferritins: Molecular properties, iron storage function and cellular regulation, Biochim. Biophys. Acta 1275 (1996) 161-203.

DOI: 10.1016/0005-2728(96)00022-9

Google Scholar

[11] M. Ceolín, N. Gálvez, P. Sánchez, B. Fernández, J.M. Domínguez-Vera, Structural aspects of the growth mechanism of Copper nanoparticles inside apoferritin, Eur. J. Inorg. Chem. 2008 (2008) 795–801.

DOI: 10.1002/ejic.200700891

Google Scholar

[12] J.D. Klemm, S.L. Schreiber, G.R. Crabtree, Dimerization as a regulatory mechanism in signal transduction, Annu. Rev. Immunol. 16 (1998) 569–592.

DOI: 10.1146/annurev.immunol.16.1.569

Google Scholar

[13] A. Fegan, B. White, J.C.T. Carlson, C.R. Wagner, Chemically controlled protein assembly: Techniques and applications, Chem. Rev. 110 (2010) 3315–3336.

DOI: 10.1021/cr8002888

Google Scholar

[14] T.W. Corson, N. Aberle, C.M. Crews, Design and applications of bifunctional small molecules: Why two heads are better than one, ACS Chem. Biol. 3 (2008) 677–692.

DOI: 10.1021/cb8001792

Google Scholar

[15] F.C. Meldrum, B.R. Heywood, S. Mann, Magnetoferritin: In vitro synthesis of a novel magnetic protein, Science 257 (1992) 522-523.

DOI: 10.1126/science.1636086

Google Scholar

[16] G. Liu, H. Wu, J. Wang, Y. Lin, Apoferritin-templated synthesis of metal phosphate nanoparticle labels for electrochemical immunoassay, Small 2 (2006) 1139-1143.

DOI: 10.1002/smll.200600206

Google Scholar

[17] T. Douglas, V.T. Stark, Nanophase Cobalt oxyhydroxide mineral synthesized within the protein cage of Ferritin, Inorg. Chem. 39 (2000) 1828-1830.

DOI: 10.1021/ic991269q

Google Scholar

[18] J. -W. Kim, S.H. Choi, P.T. Lillehei, S. -H. Chu, G.C. King, G.D. Watt, Cobalt oxide hollow nanoparticles derived by bio-templating, Chem. Commun. (2005) 4101-4103.

DOI: 10.1039/b505097a

Google Scholar

[19] R.M. Kramer, C. Li, D.C. Carter, M.O. Stone, R.R. Naik, Engineered protein cages for nanomaterial synthesis, J. Am. Chem. Soc. 126 (2004) 13282-13286.

DOI: 10.1021/ja046735b

Google Scholar

[20] T. Ueno, M. Suzuki, T. Goto, T. Matsumoto, K. Nagayama, Y. Watanabe, Size-selective Olefin hydrogenation by a Pd nanocluster provided in an Apoferritin cage, Angew. Chem. 116 (2004) 2581-2584; Angew. Chem. Int. Ed. 43 (2004) 2527-2530.

DOI: 10.1002/anie.200353436

Google Scholar

[21] B. Warne, O.I. Kasyutich, E.L. Mayes, J.A.L. Wiggins, K.K.W. Wong, Self assembled nanoparticulate Co: Pt for data storage applications, IEEE Trans. Magn. 36 (2000) 3009-3011.

DOI: 10.1109/20.908658

Google Scholar

[22] R. Chiaraluce, V. Consalvi, S. Cavallo, A. Ilari, S. Stefanini, E. Chiancone, The unusual dodecameric ferritin from Listeria innocua dissociates below pH 2. 0, Eur. J. Biochem. 267 (2000) 5733-5741.

DOI: 10.1046/j.1432-1327.2000.01639.x

Google Scholar

[23] J. Maheshkumar, B. Sreedhar, B.U. Nair, A. Dhathathreyan, Supported lipid bilayers as templates to design manganese oxide nanoparticles, J. Chem. Sci. 124 (2012) 979-984.

DOI: 10.1007/s12039-012-0295-4

Google Scholar

[24] L. Whitemore, B. Wallace, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Res. 32 (2004) W668−673.

DOI: 10.1093/nar/gkh371

Google Scholar

[25] J.G. Wardeska, B. Viglione, N.D. Chasteen, Metal ion complexes of apoferritin, J. Biol. Chem. 261 (1986) 6677-6683.

DOI: 10.1016/s0021-9258(19)62670-0

Google Scholar

[26] C. Jordan, K.M. Bennett, High R1 of Mn2+ adsorbed to hydrophilic pores of magnetoferritin nanoparticles, Proc. Intl. Soc. Mag. Reson. Med. 19 (2011) 321.

Google Scholar