Fabrication of Piezoelectric Polyvinylidene Fluoride (PVDF) Polymer-Based Tactile Sensor Using Electrospinning Method

Article Preview

Abstract:

The polyvinylidene fluoride (PVDF) nanofiber has widely investigated as a sensor and transducer material, because of its high piezo and Ferro electric properties. The novel nano structure of PVDF has attracted considerable interest in the bio sensing and biomedical application. This paper deals with PVDF Tactile sensor. Basically The PVDF acts as piezoelectric effect which convert load into electrical signals. The tactile sensor has a main role for visual handicap and robotics. Any physical activities of robotic in all industrial the tactile sensor is a crucible role, whether it can left the object or handling glass parts pressure of object is main. The Sandwich type PVDF base tactile sensor has been fabricated using nanofiber. Using electro spinning method, the PVDF based nanofiber coated over coper the electrodes. In normal, the PVDF has α-phase and while applying electric pulse the PVDF polymer would be changed from α-phase into β-phase. Only in β-phase, the PVDF act as piezo electrics sensor and measure the piezoelectricity simultaneously measure pressure and temperature in real time. The pressure was monitored from the change in the electrical resistance via the piezo resistance of the material. The enhancement of PVDF properties has been carried by using SEM. The SEM image result showed that the size of nanofiber, the size of nanofiber is varied in the range of (180 nm-400 nm) with smooth surface. The X-Ray diffraction has shown that the PVDF was aggregated with the β-phase crystalline nature. Due to β-phase it was act as a piezo electric prosperity’s and its results are very high sensitivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-50

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. B. Edin, I. Beccai, l. Ascari, s. Roccella, J. J. Cabibihan and m. C. Carrozza, A bio-inspired approach for the design and characterization of a tactile sensory system for a cybernetic prosthetic hand, in: proc. ieee int. Conf. On robotics and Automation, orlando, (2006).

DOI: 10.1109/robot.2006.1641897

Google Scholar

[2] J. Butterfa, M. Grebenstein, H. Lui and G. Hirzinger, DLR-hand II: next generation of a dexterousrobot hand, in: proc. ieee int. Conf. On robotics and automation, seoul. (2001). 109–114.

DOI: 10.1109/robot.2001.932538

Google Scholar

[3] A. Mishkin, Y. Lee, D. Korth and T. leblanc, Human–robotic missions to the moon and mars: operations design implications, in: proc. ieee Aerospace conf., big sky, mt, (2007). 1–10.

DOI: 10.1109/aero.2007.352960

Google Scholar

[4] S. Sokhanvar, M. Packirisamy and J. Dargahi, a multifunctional pvdf-based tactile sensor for minimally invasive surgery, smart mater. Struct. 16, (2007). 989–998.

DOI: 10.1088/0964-1726/16/4/006

Google Scholar

[5] A. P. Miller,W. J. Peine, J. S. Son and Z. T. Hammoud, Tactile imaging system for localizing lung nodules during video assisted thoracoscopic surgery, in: proc. Ieee int. Conf. On robotics and automation, rome, (2007). 10–14.

DOI: 10.1109/robot.2007.363927

Google Scholar

[6] R. D. Howe,W. J. Peine, D. A. Kantarinis and J. S. Son, Remote palpation technology, ieee eng. med. Biol. Mag. 14, (1995). 318–323.

DOI: 10.1109/51.391770

Google Scholar

[7] J. Tegin and J. Wikander, Tactile sensing in intelligent robotic manipulation, Ind. Robot 32, (2005) 64–70.

DOI: 10.1108/01439910510573318

Google Scholar

[8] V. Shamanna, S. Das, Z. Çelik-butler, D. P. Butler and K. L. Lawrence, Micromachined integrated pressure–thermal sensors on flexible substrates, j. Micromech. Microeng. 16, (2006)1984–(1992).

DOI: 10.1088/0960-1317/16/10/010

Google Scholar

[9] M. Lowe, a. King, e. Lovett and T. Papakostas, Flexible tactile sensor technology: bringing haptics to life, Sensor rev. 24, (2004). 33–36.

DOI: 10.1108/02602280410515798

Google Scholar

[10] M. Helsel, j. N. Zemel and v. Dominko, An impedance tomographic tactile sensor, Sensors Actuators 14, (1988) 93–98.

DOI: 10.1016/0250-6874(88)80009-x

Google Scholar

[11] R. A. Russell, A tactile sensor skin for measuring surface contours, in: proc. Ieee region 10 int. conf. On technology enabling tomorrow: computers, communications and automation towards the 21st century, melbourne, (1992) 262–266.

DOI: 10.1109/tencon.1992.271943

Google Scholar

[12] R. A. Russell and S. Parkinson, Sensing surface shape by touch, in: proc. Ieee int. Conf. On Robotics and Automation, atlanta, ga, vol. 1, (1993) 423–428.

Google Scholar

[13] Vidal-verdú, F. Oballe-peinado, Sánchez-durán, J.A. Castellanos-ramos, J. Navas-gonzález, R. Three realizations and comparison of hardware for piezoresistive tactile sensors. SENSORS (2011) 3249–3266.

DOI: 10.3390/s110303249

Google Scholar

[14] J. Rogers, A Electronics: a diverse printed future. Nature 468, (2010)177–178.

Google Scholar

[15] R.H. Kim, Et al. Waterproof alingap optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, (2010) 929–937.

Google Scholar

[16] Takahashi, T, Takei, K., Gillies, A. G., Fearing, R. S. & Javey, A. Carbon nanotube active- matrix backplanes for conformal electronics and sensors. Nano lett. 11, (2011) 5408–5413.

DOI: 10.1021/nl203117h

Google Scholar

[17] Luana persano, Canan dagdeviren, Yewang su, Yihui zhang, Salvatore girardo, Dario pisignano, Yonggang huang & John A. Rogers, High performance piezoelectric devicesbased on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene), Natue Nature Communications | 2012: 1633.

DOI: 10.1038/ncomms2639

Google Scholar

[18] T. Shimizu, M. Shikid, K. Sato, and K. Itoigawa, New type of tactile sensor detecting contact force and hardness of an object. ieee (2002)7803-7185.

DOI: 10.1109/memsys.2002.984273

Google Scholar

[20] J . Dargahi, S. Najarian, Analysis of a membrane typepolymeric-based tactile sensor for biomedical and medicalrobotic applications, Sensormat, vol. 16, (2004) 25-41.

Google Scholar

[21] J. Dargahi; An endoscopic and robotic tooth-like complianceand roughness tactile sensor, J Mech Des, vol. 124, (2002) 576-582.

DOI: 10.1115/1.1471531

Google Scholar

[22] M.H. Lee H.R. Nicholls, Tactile sensing for mechatronics, a-state-of-the-art survey, Mechatronics, vol. 9, (1999) 1-31.

DOI: 10.1016/s0957-4158(98)00045-2

Google Scholar

[23] H. R Nicholls, Advanced tactile sensing for robotics, world scientific, Singapore, (1992).

Google Scholar

[24] J.S. Wilson, Sensor technology handbook", Elsevier, newnes, (2005).

Google Scholar

[25] A. Guyton, J. Hall, Text book of medical physiology, 9th Edition, (1996).

Google Scholar

[26] H. Kawai, The piezoelectricity of poly(vinylidene fluoride). Jpn. J. Appl. Phys. 8, (1969) 975–976.

Google Scholar

[27] B.E. Moharjir, N. Heymans, Changes in structural and mechanical behaviour of pvdf with processing and thermomechanical treatments. 1. Change in Structure. Polymer 42, (2001), 5661–5667.

DOI: 10.1016/s0032-3861(01)00064-7

Google Scholar

[28] J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrost. 35, (1995) 151–160.

DOI: 10.1016/0304-3886(95)00041-8

Google Scholar

[29] Z.Z. Zhao, J.Q. Li, X.Y. Yuan, Y.Y. Zhang,J. Sheng, Preparation and properties of electrospun poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. (2005), 97, 466–474.

DOI: 10.1002/app.21762

Google Scholar

[30] J. Van der geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51–59.

Google Scholar

[31] J. Jietal, An ultiminiature CMOS pressure sensor for a multiplaced cardiovascular catheter. IEEE transaction on Elatron Devis 39(110)(1992)2260-2362.

Google Scholar

[32] V.A. Depalma, et al., Investigation of three-surface properties of several metals and their relation to blood compatibility, Journal of Biomedical Materials Research 6 (4) (1972) 37–75.

DOI: 10.1002/jbm.820060406

Google Scholar

[33] A.L. Yarin, S. Koombhongse, D.H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, journal of applied physics 90, (2001) 4836.

DOI: 10.1063/1.1408260

Google Scholar

[34] Jiyoung Chang, Piezoelectric nanofibers for energy scavenging application, sciverse science direct nano energy (2012)1, 356-371.

Google Scholar

[35] D. Sun, C. Chang, S. Li, and L. Lin, Near-field electrospinning, Nano Lett. 6(4), (2006) 839–842.

DOI: 10.1021/nl0602701

Google Scholar

[36] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency, Nano Letters, vol. 10, no. 2, pp. (2010), 726–731.

DOI: 10.1021/nl9040719

Google Scholar

[37] Bashir Ahmed, S.K. Raghuvanshi, Siddhartha, 1. 25 mev gamma irradiated induced physical and chemical changesin poly vinylidene fluoride (pvdf) polymer , progress in nanotechnology and nanomaterials apr. 2013, vol. 2 issn. 2, pp.42-46.

Google Scholar

[38] J. Fang, X. Wang, T. Lin, Needleless Melt-Electrospinning of Polypropylene Nanofibres, Journal of materials chemistry, 21(2011), (11088-11091).

Google Scholar

[39] D. Farrar,K. Ran,D. Cheng,S. Kim,W. Moon W.L. Wilson et. The fabrication of piezoelectric fibers using near-field electrospinning method for smart patch all advanced material 23, (2011), 3954-3958.

Google Scholar

[40] J. Zheng,. Lle,I. Lic.C. Han, Macromolecular rapid. communication, (2007), 2159-2169.

Google Scholar

[41] Jiyoung Chang, Michael Dommer, Chieh Chang, Liwi Lin, Piezoelectri nano fibers for energy scavenging applications, scivers science direct. (2012), (356-371).

DOI: 10.1016/j.nanoen.2012.02.003

Google Scholar

[42] L. Calcagno, P. Musumeci, R. Percolla, G. Foti, Changes in the Physical andChemical Properties of PVDF Irradiated by 4 MeV Protons, Nucl. Instr. And Meth. B 91(1994) 461–464.

Google Scholar

[43] D. Mendel,S. Yoon K.L. Kim, Macromolecular rapid communication 32(2011)823-837.

Google Scholar

[44] M. Matsuda, K.I. Yamamoto, T. Yakushiji, M. Fukuda, M. Miyasaka, K. Sakai, Nano technological evaluation of protein adsorption on dialysis membrane surface hydrophilized with polyvinylpyrrolidone. J. Membr. Sci. (2008), 310, 219–228.

DOI: 10.1016/j.memsci.2007.10.054

Google Scholar

[45] A. J. Chippingdale, R. J. Prance, T. D. Clark and F. Brouers, Molecular organization in structural PVDF, J. Phys. D 27 (1994) 2426.

Google Scholar

[46] C. Ludwig, G. Eberle, B. Gompf, J. Petersen and. Eisenmenger, Thermal motion of one-dimensional domain walls in monolayers of a polar polymer observed by Video-STM Annal. Physik 2 (1993) 323.

DOI: 10.1002/andp.19935050402

Google Scholar

[47] A. Bessieres, M. Meireles, R. Coratger, J. Beauvillain and V. Sanchez, . Investigations of surface properties of polymeric membranes by near field microscopy, Membr. Sci. 109 (1996)271.

DOI: 10.1016/0376-7388(95)00209-x

Google Scholar

[48] H. Hansma, F. Motamedi, P. Smith, P. Hansma and J. C. Wittman, Molecular epitaxy of perfluoroicosane on PTFE tribological transferfilms studied by XPS and RAIRS polymer 33 (1992) 647.

DOI: 10.1016/0032-3861(92)90745-i

Google Scholar

[49] W. Stocker, M. Schumacher, S. Graff, J. Lang, J. C. Wittman, A. J. Lovinger and B. Lotz, Macromolecules 27 (1994) 6948.

Google Scholar

[50] L. C. Sawyer and d. T. Grubb, 'polymer microscopy', 2nd edn (chapman and hall, london, 1996) ISBN 0412-604-906.

DOI: 10.1002/sca.4950180811

Google Scholar

[51] A. k. Srivastava, H.S. Virk, 50mev lithium ion beam irradiation effects in poly vinylidene fluoride (pvdf) polymer. Bull. Mater. Sci., 23(2000) 533– 538.

DOI: 10.1007/bf02903896

Google Scholar

[52] M. Spasova, D. Paneva, N. Manolova, P. Radenkov, I. Rashkov, Electrospun chitosan-coated fibers of poly(L-lactide) and poly(L-lactide)/poly(ethylene glycol): preparation and characterization. Macromol biosci (2008), 153-162.

DOI: 10.1002/mabi.200700129

Google Scholar

[53] C. Zhang, X. Yuan, Wu L. han,J. Sheng . Study on morphology of electrospun poly (vinyl alcohol) Eur polymer j( 2005) 423-32.

DOI: 10.1016/j.eurpolymj.2004.10.027

Google Scholar

[54] Noboru Osaka, Kyoshiro Yanagi and Hiromu Saito, The optical transparency and structural change of quenched poly(vinylidene fluoride) caused by cold-drawing, polymer journal 45, (2013)1033-1040.

DOI: 10.1038/pj.2013.26

Google Scholar