[1]
B. B. Edin, I. Beccai, l. Ascari, s. Roccella, J. J. Cabibihan and m. C. Carrozza, A bio-inspired approach for the design and characterization of a tactile sensory system for a cybernetic prosthetic hand, in: proc. ieee int. Conf. On robotics and Automation, orlando, (2006).
DOI: 10.1109/robot.2006.1641897
Google Scholar
[2]
J. Butterfa, M. Grebenstein, H. Lui and G. Hirzinger, DLR-hand II: next generation of a dexterousrobot hand, in: proc. ieee int. Conf. On robotics and automation, seoul. (2001). 109–114.
DOI: 10.1109/robot.2001.932538
Google Scholar
[3]
A. Mishkin, Y. Lee, D. Korth and T. leblanc, Human–robotic missions to the moon and mars: operations design implications, in: proc. ieee Aerospace conf., big sky, mt, (2007). 1–10.
DOI: 10.1109/aero.2007.352960
Google Scholar
[4]
S. Sokhanvar, M. Packirisamy and J. Dargahi, a multifunctional pvdf-based tactile sensor for minimally invasive surgery, smart mater. Struct. 16, (2007). 989–998.
DOI: 10.1088/0964-1726/16/4/006
Google Scholar
[5]
A. P. Miller,W. J. Peine, J. S. Son and Z. T. Hammoud, Tactile imaging system for localizing lung nodules during video assisted thoracoscopic surgery, in: proc. Ieee int. Conf. On robotics and automation, rome, (2007). 10–14.
DOI: 10.1109/robot.2007.363927
Google Scholar
[6]
R. D. Howe,W. J. Peine, D. A. Kantarinis and J. S. Son, Remote palpation technology, ieee eng. med. Biol. Mag. 14, (1995). 318–323.
DOI: 10.1109/51.391770
Google Scholar
[7]
J. Tegin and J. Wikander, Tactile sensing in intelligent robotic manipulation, Ind. Robot 32, (2005) 64–70.
DOI: 10.1108/01439910510573318
Google Scholar
[8]
V. Shamanna, S. Das, Z. Çelik-butler, D. P. Butler and K. L. Lawrence, Micromachined integrated pressure–thermal sensors on flexible substrates, j. Micromech. Microeng. 16, (2006)1984–(1992).
DOI: 10.1088/0960-1317/16/10/010
Google Scholar
[9]
M. Lowe, a. King, e. Lovett and T. Papakostas, Flexible tactile sensor technology: bringing haptics to life, Sensor rev. 24, (2004). 33–36.
DOI: 10.1108/02602280410515798
Google Scholar
[10]
M. Helsel, j. N. Zemel and v. Dominko, An impedance tomographic tactile sensor, Sensors Actuators 14, (1988) 93–98.
DOI: 10.1016/0250-6874(88)80009-x
Google Scholar
[11]
R. A. Russell, A tactile sensor skin for measuring surface contours, in: proc. Ieee region 10 int. conf. On technology enabling tomorrow: computers, communications and automation towards the 21st century, melbourne, (1992) 262–266.
DOI: 10.1109/tencon.1992.271943
Google Scholar
[12]
R. A. Russell and S. Parkinson, Sensing surface shape by touch, in: proc. Ieee int. Conf. On Robotics and Automation, atlanta, ga, vol. 1, (1993) 423–428.
Google Scholar
[13]
Vidal-verdú, F. Oballe-peinado, Sánchez-durán, J.A. Castellanos-ramos, J. Navas-gonzález, R. Three realizations and comparison of hardware for piezoresistive tactile sensors. SENSORS (2011) 3249–3266.
DOI: 10.3390/s110303249
Google Scholar
[14]
J. Rogers, A Electronics: a diverse printed future. Nature 468, (2010)177–178.
Google Scholar
[15]
R.H. Kim, Et al. Waterproof alingap optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, (2010) 929–937.
Google Scholar
[16]
Takahashi, T, Takei, K., Gillies, A. G., Fearing, R. S. & Javey, A. Carbon nanotube active- matrix backplanes for conformal electronics and sensors. Nano lett. 11, (2011) 5408–5413.
DOI: 10.1021/nl203117h
Google Scholar
[17]
Luana persano, Canan dagdeviren, Yewang su, Yihui zhang, Salvatore girardo, Dario pisignano, Yonggang huang & John A. Rogers, High performance piezoelectric devicesbased on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene), Natue Nature Communications | 2012: 1633.
DOI: 10.1038/ncomms2639
Google Scholar
[18]
T. Shimizu, M. Shikid, K. Sato, and K. Itoigawa, New type of tactile sensor detecting contact force and hardness of an object. ieee (2002)7803-7185.
DOI: 10.1109/memsys.2002.984273
Google Scholar
[20]
J . Dargahi, S. Najarian, Analysis of a membrane typepolymeric-based tactile sensor for biomedical and medicalrobotic applications, Sensormat, vol. 16, (2004) 25-41.
Google Scholar
[21]
J. Dargahi; An endoscopic and robotic tooth-like complianceand roughness tactile sensor, J Mech Des, vol. 124, (2002) 576-582.
DOI: 10.1115/1.1471531
Google Scholar
[22]
M.H. Lee H.R. Nicholls, Tactile sensing for mechatronics, a-state-of-the-art survey, Mechatronics, vol. 9, (1999) 1-31.
DOI: 10.1016/s0957-4158(98)00045-2
Google Scholar
[23]
H. R Nicholls, Advanced tactile sensing for robotics, world scientific, Singapore, (1992).
Google Scholar
[24]
J.S. Wilson, Sensor technology handbook", Elsevier, newnes, (2005).
Google Scholar
[25]
A. Guyton, J. Hall, Text book of medical physiology, 9th Edition, (1996).
Google Scholar
[26]
H. Kawai, The piezoelectricity of poly(vinylidene fluoride). Jpn. J. Appl. Phys. 8, (1969) 975–976.
Google Scholar
[27]
B.E. Moharjir, N. Heymans, Changes in structural and mechanical behaviour of pvdf with processing and thermomechanical treatments. 1. Change in Structure. Polymer 42, (2001), 5661–5667.
DOI: 10.1016/s0032-3861(01)00064-7
Google Scholar
[28]
J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrost. 35, (1995) 151–160.
DOI: 10.1016/0304-3886(95)00041-8
Google Scholar
[29]
Z.Z. Zhao, J.Q. Li, X.Y. Yuan, Y.Y. Zhang,J. Sheng, Preparation and properties of electrospun poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. (2005), 97, 466–474.
DOI: 10.1002/app.21762
Google Scholar
[30]
J. Van der geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51–59.
Google Scholar
[31]
J. Jietal, An ultiminiature CMOS pressure sensor for a multiplaced cardiovascular catheter. IEEE transaction on Elatron Devis 39(110)(1992)2260-2362.
Google Scholar
[32]
V.A. Depalma, et al., Investigation of three-surface properties of several metals and their relation to blood compatibility, Journal of Biomedical Materials Research 6 (4) (1972) 37–75.
DOI: 10.1002/jbm.820060406
Google Scholar
[33]
A.L. Yarin, S. Koombhongse, D.H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, journal of applied physics 90, (2001) 4836.
DOI: 10.1063/1.1408260
Google Scholar
[34]
Jiyoung Chang, Piezoelectric nanofibers for energy scavenging application, sciverse science direct nano energy (2012)1, 356-371.
Google Scholar
[35]
D. Sun, C. Chang, S. Li, and L. Lin, Near-field electrospinning, Nano Lett. 6(4), (2006) 839–842.
DOI: 10.1021/nl0602701
Google Scholar
[36]
C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency, Nano Letters, vol. 10, no. 2, pp. (2010), 726–731.
DOI: 10.1021/nl9040719
Google Scholar
[37]
Bashir Ahmed, S.K. Raghuvanshi, Siddhartha, 1. 25 mev gamma irradiated induced physical and chemical changesin poly vinylidene fluoride (pvdf) polymer , progress in nanotechnology and nanomaterials apr. 2013, vol. 2 issn. 2, pp.42-46.
Google Scholar
[38]
J. Fang, X. Wang, T. Lin, Needleless Melt-Electrospinning of Polypropylene Nanofibres, Journal of materials chemistry, 21(2011), (11088-11091).
Google Scholar
[39]
D. Farrar,K. Ran,D. Cheng,S. Kim,W. Moon W.L. Wilson et. The fabrication of piezoelectric fibers using near-field electrospinning method for smart patch all advanced material 23, (2011), 3954-3958.
Google Scholar
[40]
J. Zheng,. Lle,I. Lic.C. Han, Macromolecular rapid. communication, (2007), 2159-2169.
Google Scholar
[41]
Jiyoung Chang, Michael Dommer, Chieh Chang, Liwi Lin, Piezoelectri nano fibers for energy scavenging applications, scivers science direct. (2012), (356-371).
DOI: 10.1016/j.nanoen.2012.02.003
Google Scholar
[42]
L. Calcagno, P. Musumeci, R. Percolla, G. Foti, Changes in the Physical andChemical Properties of PVDF Irradiated by 4 MeV Protons, Nucl. Instr. And Meth. B 91(1994) 461–464.
Google Scholar
[43]
D. Mendel,S. Yoon K.L. Kim, Macromolecular rapid communication 32(2011)823-837.
Google Scholar
[44]
M. Matsuda, K.I. Yamamoto, T. Yakushiji, M. Fukuda, M. Miyasaka, K. Sakai, Nano technological evaluation of protein adsorption on dialysis membrane surface hydrophilized with polyvinylpyrrolidone. J. Membr. Sci. (2008), 310, 219–228.
DOI: 10.1016/j.memsci.2007.10.054
Google Scholar
[45]
A. J. Chippingdale, R. J. Prance, T. D. Clark and F. Brouers, Molecular organization in structural PVDF, J. Phys. D 27 (1994) 2426.
Google Scholar
[46]
C. Ludwig, G. Eberle, B. Gompf, J. Petersen and. Eisenmenger, Thermal motion of one-dimensional domain walls in monolayers of a polar polymer observed by Video-STM Annal. Physik 2 (1993) 323.
DOI: 10.1002/andp.19935050402
Google Scholar
[47]
A. Bessieres, M. Meireles, R. Coratger, J. Beauvillain and V. Sanchez, . Investigations of surface properties of polymeric membranes by near field microscopy, Membr. Sci. 109 (1996)271.
DOI: 10.1016/0376-7388(95)00209-x
Google Scholar
[48]
H. Hansma, F. Motamedi, P. Smith, P. Hansma and J. C. Wittman, Molecular epitaxy of perfluoroicosane on PTFE tribological transferfilms studied by XPS and RAIRS polymer 33 (1992) 647.
DOI: 10.1016/0032-3861(92)90745-i
Google Scholar
[49]
W. Stocker, M. Schumacher, S. Graff, J. Lang, J. C. Wittman, A. J. Lovinger and B. Lotz, Macromolecules 27 (1994) 6948.
Google Scholar
[50]
L. C. Sawyer and d. T. Grubb, 'polymer microscopy', 2nd edn (chapman and hall, london, 1996) ISBN 0412-604-906.
DOI: 10.1002/sca.4950180811
Google Scholar
[51]
A. k. Srivastava, H.S. Virk, 50mev lithium ion beam irradiation effects in poly vinylidene fluoride (pvdf) polymer. Bull. Mater. Sci., 23(2000) 533– 538.
DOI: 10.1007/bf02903896
Google Scholar
[52]
M. Spasova, D. Paneva, N. Manolova, P. Radenkov, I. Rashkov, Electrospun chitosan-coated fibers of poly(L-lactide) and poly(L-lactide)/poly(ethylene glycol): preparation and characterization. Macromol biosci (2008), 153-162.
DOI: 10.1002/mabi.200700129
Google Scholar
[53]
C. Zhang, X. Yuan, Wu L. han,J. Sheng . Study on morphology of electrospun poly (vinyl alcohol) Eur polymer j( 2005) 423-32.
DOI: 10.1016/j.eurpolymj.2004.10.027
Google Scholar
[54]
Noboru Osaka, Kyoshiro Yanagi and Hiromu Saito, The optical transparency and structural change of quenched poly(vinylidene fluoride) caused by cold-drawing, polymer journal 45, (2013)1033-1040.
DOI: 10.1038/pj.2013.26
Google Scholar