Fabrication of an Enzymatic Biosensor Based on Gold Nanoparticles Modified Electrochemical Transducer for the Detection of Organophosphorus Compounds

Article Preview

Abstract:

A facile and sensitive enzyme based electrochemical transducer has been fabricated for the detection of organophosporus compounds. The enzyme, acetylcholinesterase, was covalently immobilized on gold nanoparticles deposited electrochemically over screen printed carbon working electrode. The electrodes were characterized by scanning electron microscopy, atomic force microscopy and electrochemical methods. The enzyme-substrate reactions and sensing studies were carried out at room temperature by cyclic voltammetry. The developed biosensor gave optimum response within 25 sec. for a substrate (acetylthiocholine) concentration of 0.0699 mM at pH. The electrode showed a linear response in the range between 0.2 and 1 ppb, and the detection limit was determined to be 0.6 ppb. Moreover the biosensor exhibited good reusability and stability thus, making it a promising tool for on-field detection of organophosphorus compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-73

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.T. Delfino, T.S. Ribeiro and J.D. Figueroa-Villar, Organophosphorus Compounds as Chemical Warfare Agents: a Review, J. Braz. Chem. Soc. 20 (2009) 407-428.

DOI: 10.1590/s0103-50532009000300003

Google Scholar

[2] R. Sferopoulos, A Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-Off-The-Shelf Items, Human Protection and Performance Division, DSTO, Fishermans Bend, Victoria, (2009).

Google Scholar

[3] J. Geoghegan, J.L. Tong, Chemical warfare agents, Anaesth. Critical Care & Pain, 6 (2006) 230-234.

Google Scholar

[4] N. Chauhan, C.S. Pundir, An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides, Anal. Chim. Acta. 701 (2011).

DOI: 10.1016/j.aca.2011.06.014

Google Scholar

[5] S. Andreescu, T. Noguer, V. Magearu, J. L Marty, Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents, Talanta. 57 (2002) 169-176.

DOI: 10.1016/s0039-9140(02)00017-6

Google Scholar

[6] D. Du, S. Chen, J. Cai, A. Zhang, Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol–gel film for amperometric detection of organophosphorous insecticide, Biosens. Bioelectron. 23 (2007) 130-134.

DOI: 10.1016/j.bios.2007.03.008

Google Scholar

[7] A.A. Ciucu, Chemically Modified Electrodes in Biosensing, Biosens. Bioelectron. 5 (2014) 1-10.

DOI: 10.4172/2155-6210.1000154

Google Scholar

[8] A. Sassolas, B. Prieto-Simón, J.L. Marty, Biosensors for Pesticide Detection: New Trends, J. Anal. Chem. 3 (2012) 210-232.

DOI: 10.4236/ajac.2012.33030

Google Scholar

[9] N. Arora, Recent Advances in Biosensors Technology: A Review, Octa. J. Biosci. 1 (2013) 147-150.

Google Scholar

[10] R. Monošík, M. Streďanský, E. Šturdík, Biosensors - classification, characterization and new trends, Acta Chimica Slovaca. 5 (2012) 109-120.

DOI: 10.2478/v10188-012-0017-z

Google Scholar

[11] D. Du, X. Huang, J. Cai, A. Zhang, Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor, Biosens. Bioelectron. 23 (2007) 285-289.

DOI: 10.1016/j.bios.2007.05.002

Google Scholar

[12] G.S. Nunes, G. Jeanty, J.L. Marty, Enzyme immobilization procedures on screen-printed electrodes used for the detection of anticholinesterase pesticides Comparative study, Anal. Chim. Acta. 523 (2004) 107-115.

DOI: 10.1016/j.aca.2004.03.100

Google Scholar

[13] S. Andreescu, L. Barthelmebs, J.L. Marty, Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides, Anal. Chim. Acta. 464 (2002).

DOI: 10.1016/s0003-2670(02)00518-4

Google Scholar

[14] D. Du, S. Chen, D. Song, H. Li, X. Chen, Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface, Biosens. Bioelectron. 24 (2008) 475-479.

DOI: 10.1016/j.bios.2008.05.005

Google Scholar

[15] Y. Li, H. J. Schluesener, S. Xu, Gold nanoparticle-based biosensor, Gold Bull. 43 (2010) 29-38.

Google Scholar

[16] G. Cui, J.H. Yoo, J.S. Lee, J. Yoo, J.H. Uhm, G.S. Cha, H. Nam, Effect of pre-treatment on the surface and electrochemicalproperties of screen-printed carbon paste electrodes, Analyst. 126 (2001) 1399-1403.

DOI: 10.1039/b102934g

Google Scholar

[17] T. Hezard, K. Fajerwerg, D. Evrard, V. Collière, P. Behra, P. Gros, Influence of the gold nanoparticles electrodeposition method on Hg(II) trace electrochemical detection, Electrochim. Acta. 73 (2012) 15-22.

DOI: 10.1016/j.electacta.2011.10.101

Google Scholar

[18] T. Hezard, K. Fajerwerg, D. Evrard, V. Collière, P. Behra, P. Gros, Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis, J. Electroanal. Chem. 664 (2012) 46-52.

DOI: 10.1016/j.jelechem.2011.10.014

Google Scholar

[19] M. Lan, C. Chen, Q. Zhou, Y. Teng, H. Zhao, X. Niu, Voltammetric detection of microcystis genus specific-sequence with disposable screen-printed electrode modified with gold nanoparticles, Adv. Mat. Lett. 3 (2010) 217-224.

DOI: 10.5185/amlett.2010.

Google Scholar

[20] P. Fanjul-Bolado, D. Hern´andez-Santos, P.J. Lamas-Ardisana, A. Mart´ın-Pern´ıa , A. Costa-Garc´ıa, Electrochemical characterization of screen-printed and conventional carbon paste electrodes, Electrochim. Acta. 53 (2008) 3635-3642.

DOI: 10.1016/j.electacta.2007.12.044

Google Scholar

[21] J. Wang, Study of electrodes in: Analytical Electrochemistry, second ed., Wiley-VCH, New York, 2001, pp.28-39.

Google Scholar

[22] Y. Yang, A.M. Asiri, D. Du, Y. Lin, Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced grapheme oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides, Analyst. 139 (2014).

DOI: 10.1039/c4an00068d

Google Scholar

[23] J.A. Ho, W.L. Hsu, W.C. Liao, J.K. Chiu, M.L. Chen, H.C. Chang, C. C Li, , Ultrasensitive electrochemical detection of biotin using electrically addressable site-oriented antibody immobilization approach via aminophenyl boronic acid, Biosens. Bioelectron. 26 (2010).

DOI: 10.1016/j.bios.2010.08.048

Google Scholar

[24] P.C. Pandey, S. Upadhyay, H.C. Pathak, C.M.D. Pandey, I. Tiwari, Acetylthiocholine/ acetylcholine and thiocholine/ choline electrochemical biosensors/sensors based on an organically modified sol–gel glass enzyme reactor and graphite paste electrode, Sens. Actuators B. 62 (2000).

DOI: 10.1016/s0925-4005(99)00367-6

Google Scholar

[25] S. Wu, F. Huang, X. Lan, X. Wang, J. Wang, C. Meng, Electrochemically reduced graphene oxide and Nafion nanocomposite for ultralow potential detection of organophosphate pesticide, Sens. Actuators B. 177 (2013) 724-729.

DOI: 10.1016/j.snb.2012.11.069

Google Scholar

[26] Y. Li, Y. Bai, G. Han, M. Li, Porous-reduced graphene oxide for fabricating an amperometric acetylcholinesterase biosensor, Sens. Actuators B. 185 (2013) 706-712.

DOI: 10.1016/j.snb.2013.05.061

Google Scholar