[1]
A. C. Ramírez, F. E. Charry Pastrana, J. R. Rojas, D. A. Landinez Tellez, F. Fajardo, Synthesis, structural and morphological characterization of the perovskite LaYbO3, J. Physics: Conf. Ser. 687 (2016) 1-4.
DOI: 10.1088/1742-6596/687/1/012104
Google Scholar
[2]
A. Siai, L.Ajili, K. Horchani-Naifer, Tm3+ Modifying Er3+ Red Emission and Dielectric Properties of Tm3+-Doped LaErO3 Perovskite, J. Electron. Mater. 49 (2020) 3096–3105
DOI: 10.1007/s11664-020-08052-7
Google Scholar
[3]
J. C. Soares, P.F. Kisla, R. L. Siqueira, M. A. Dias, Synthesis of SmLuO3 and EuLuO3 interlanthanides from hydrothermally-derived nanostructured precursors, Arab. J. Chem. 12 (2019) 4035-4043
DOI: 10.1016/j.arabjc.2016.03.010
Google Scholar
[4]
D. Navas; S. Fuentes; A. Castro-Alvarez; E. Chavez-Angel Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials, Gels. 7 (2021) 275
DOI: 10.3390/gels7040275
Google Scholar
[5]
Z. Chen, C. Li, A. A. Zhumekenov, X. Zheng, C. Yang, H. Yang, Solution-Processed Visible-Blind Ultraviolet Photodetectors with Nanosecond Response Time and High Detectivity, Adv. Opt. Mater. 7, (2019) 1900506.
DOI: 10.1002/adom.201900506
Google Scholar
[6]
Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun, All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics, Adv. Mater. 27 (2015) 7101–7108.
DOI: 10.1002/adma.201503573
Google Scholar
[7]
Y. Liu, N. Li, R. Sun, W. Zheng, T. Liu, H. Li, Stable Metal-Halide Perovskites for Luminescent Solar Concentrators of Real-Device Integration, Nano Energ. 85 (2021) 105960.
DOI: 10.1016/j.nanoen.2021.105960
Google Scholar
[8]
L. Sun, W. Li, W. Zhu, Z. Chen Single-crystal Perovskite Detectors: Development and Perspectives, J. Mater. Chem. C, 8 (2020) 11664–11674.
DOI: 10.1039/d0tc02944k
Google Scholar
[9]
H. Wei, J. Huang, Halide lead perovskites for ionizing radiation detection, Nature Commun. 10 (2019) 1-12
DOI: 10.1038/s41467-019-08981-w
Google Scholar
[10]
R. Gan, Y. Nishida, M. Haneda Effect of B Site Substitution on the Catalytic Activity of La-Based Perovskite for Oxidative Coupling of Methane, Physica status solidi. 259 (2022) 2100544
DOI: 10.1002/pssb.202100544
Google Scholar
[11]
Lavrynenko O., Pavlenko O., Olifan O. Characteristics of nano-sized composites based on rare earth orthoferrites and hematite, Bulletin of National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Series «Chemical Engineering, Ecology and Resource Saving». 2022. № 4 (21), P. 73-87.
DOI: 10.20535/2617-9741.4.2022.269813
Google Scholar
[12]
Zgalat-Lozynskyy, O., Tischenko, N., Shirokov, O. et al. Deformation Treatment in Spark Plasma Sintering Equipment and Properties of AlON-based Ceramic. J. of Materi Eng and Perform 31, 2575–2582 (2022)
DOI: 10.1007/s11665-021-06381-0
Google Scholar
[13]
V. M. Goldschmidt, Die Gesetze der Krystallochemie, Natur wissensch aften. 14 (1926) 477–485.
DOI: 10.1007/bf01507527
Google Scholar
[14]
H. Zhang, N. Li, K. Li, D. Xue Structural stability and formability of ABO3–type perovskite compounds, Acta Cryst. B. 63 (2007) 812-818.
DOI: 10.1107/s0108768107046174
Google Scholar
[15]
Konysheva E.Yu. Perovskite-like materials based on transition and rare-earth metals: laws of chemical bonding and thermal stability / Dissertation on the search for a doctor of chemical sciences degree - St. Petersburg 2018.
Google Scholar
[16]
U. Berndt, D. Maier, C. Keller, Phasengleichgewichte in Interlanthanidenoxid-Systemen, J. Solid State Chem. 16 (1976) P. 189–195.
DOI: 10.1016/0022-4596(76)90022-0
Google Scholar
[17]
O. Kornienko, S. Yushkevych, O. Bykov, A. Samelyuk, Y. Bataiev Phase Equilibrium in the Ternary CeО2–La2O3–Yb2O3 System at 1500 °С, Sol. Stat. Phenom. 331 (2022) 159-172
DOI: 10.4028/p-4000g3
Google Scholar
[18]
O.A. Kornienko, O.V. Chudinovych, A.I. Bykov, A.V. Samelyuk, E. R. Andrievskaya Phase Equilibria in the La2O3–Er2O3 System in the Temperature Range 1100–1500°C, Powd. Metall. and Met. Ceram. 58 (2019) 89–98.
DOI: 10.1007/s11106-019-00051-6
Google Scholar
[19]
O. Chudinovych, N. Zhdanyuk, Interaction of lanthane and lutetium at temperature 1500–1600°C, Ukrain. Chem. J., 86 (2020). 19-25. https://doi.org/10.33609/0041-6045.86.3. 2020.19-25
DOI: 10.33609/0041-6045.86.3.2020.19-25
Google Scholar
[20]
Toropov, S.А., Phase Diagrams of the Refractory Oxide Systems, Binary systems. chapter 3, Leningrad, Nauka, 1987, 5, 264.
Google Scholar
[21]
A. Cristina, Crystal chemistry, stability and properties of interlanthanide perovskites: A review, J. Eur. Ceram. Soc. 37 (2017) 427–440.
Google Scholar
[22]
T.F. Lobunets, O.V. Chudinovych, O.V. Shyrokov, A.V. Ragulya, Study on the precursors structure formation for obtaining nanopowders with perovskite structure, Chem., Physics and technol. of surf. 11 (2020) 319-329.
Google Scholar
[23]
Ivanchenko S.E. Generalized Method for Normalizing the Degree of Thixotropy/Rheopexy to Evaluate the Structure of Powder Suspensions, Powder Metall Met Ceram (2023)
DOI: 10.1007/s11106-023-00375-4
Google Scholar
[24]
Xiaokai Li,, Xiaojian Mao, Minghui Feng, Shen Qi, Benxue Jiang, Long Zhang, Fabrication of transparent La-doped Y2O3 ceramics using different La2O3 precursors, J. Europ. Ceram. Soc. 36 (2016) 2549-2553
DOI: 10.1016/j.jeurceramsoc.2016.03.024
Google Scholar
[25]
So-Jin Kim, Won-Kyu Han, Sung-Goon Kang, Min-Su Han, Young-Hun Cheong, Formation of lanthanum hydroxide and oxide via precipitation, Solid State Phenom. 135 (2008) 23-26
DOI: 10.4028/www.scientific.net/SSP.135.23
Google Scholar
[26]
K. Ito, K. Tezuka, and Y. Hinatsu. Preparation, magnetic susceptibility, and specific heat on interlanthanide perovskites ABO3 (A=La-Nd, B=Dy-Lu). Journal of Solid State Chemistry, 156:173–179, (2001)
DOI: 10.1006/jssc.2000.9071
Google Scholar
[27]
T.S. Suzuki, Y. Sakka, K. Kitazawa Orientation amplification of alumina by colloidal filtration in a strong magnetic field and sintering, Advanc. Engin. Mater. 3 (2001) 490-492.
DOI: 10.1002/1527-2648(200107)3:7<490::aid-adem490>3.3.co;2-f
Google Scholar