Spark Plasma Sintering of a Ceramic Material with a LaLuO3 Perovskite-Type Structure

Article Preview

Abstract:

The development of new materials for various fields of science and technology has always been an important and priority task for scientists around the world. Recently, more and more interest in the creation of new materials has been drawn to compounds based on the perovskite phase with the general formula ABO3. The ability of the perovskite structure to adapt to different combinations of chemical elements leads to the possibility of creating new materials with different physical and chemical characteristics. In the present study, an ordered phase with a LaLuO3 perovskite-type structure was synthesized using the mechanosynthesis technique. The obtained material was sintered by spark plasma sintering. It was found that the formation of an ordered phase with a perovskite-type structure occurs directly during spark plasma sintering. A dense (99.7%) single-phase sample with a LaLuO3 perovskite-type structure was obtained. Despite the rather high density of the obtained sample (99.7%), it remains translucent for a number of reasons: the obtained sample is characterized by randomly oriented grains, which creates additional optical scattering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. C. Ramírez, F. E. Charry Pastrana, J. R. Rojas, D. A. Landinez Tellez, F. Fajardo, Synthesis, structural and morphological characterization of the perovskite LaYbO3, J. Physics: Conf. Ser. 687 (2016) 1-4.

DOI: 10.1088/1742-6596/687/1/012104

Google Scholar

[2] A. Siai, L.Ajili, K. Horchani-Naifer, Tm3+ Modifying Er3+ Red Emission and Dielectric Properties of Tm3+-Doped LaErO3 Perovskite, J. Electron. Mater. 49 (2020) 3096–3105

DOI: 10.1007/s11664-020-08052-7

Google Scholar

[3] J. C. Soares, P.F. Kisla, R. L. Siqueira, M. A. Dias, Synthesis of SmLuO3 and EuLuO3 interlanthanides from hydrothermally-derived nanostructured precursors, Arab. J. Chem. 12 (2019) 4035-4043

DOI: 10.1016/j.arabjc.2016.03.010

Google Scholar

[4] D. Navas; S. Fuentes; A. Castro-Alvarez; E. Chavez-Angel Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials, Gels. 7 (2021) 275

DOI: 10.3390/gels7040275

Google Scholar

[5] Z. Chen, C. Li, A. A. Zhumekenov, X. Zheng, C. Yang, H. Yang, Solution-Processed Visible-Blind Ultraviolet Photodetectors with Nanosecond Response Time and High Detectivity, Adv. Opt. Mater. 7, (2019) 1900506.

DOI: 10.1002/adom.201900506

Google Scholar

[6] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun, All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics, Adv. Mater. 27 (2015) 7101–7108.

DOI: 10.1002/adma.201503573

Google Scholar

[7] Y. Liu, N. Li, R. Sun, W. Zheng, T. Liu, H. Li, Stable Metal-Halide Perovskites for Luminescent Solar Concentrators of Real-Device Integration, Nano Energ. 85 (2021) 105960.

DOI: 10.1016/j.nanoen.2021.105960

Google Scholar

[8] L. Sun, W. Li, W. Zhu, Z. Chen Single-crystal Perovskite Detectors: Development and Perspectives, J. Mater. Chem. C, 8 (2020) 11664–11674.

DOI: 10.1039/d0tc02944k

Google Scholar

[9] H. Wei, J. Huang, Halide lead perovskites for ionizing radiation detection, Nature Commun. 10 (2019) 1-12

DOI: 10.1038/s41467-019-08981-w

Google Scholar

[10] R. Gan, Y. Nishida, M. Haneda Effect of B Site Substitution on the Catalytic Activity of La-Based Perovskite for Oxidative Coupling of Methane, Physica status solidi. 259 (2022) 2100544

DOI: 10.1002/pssb.202100544

Google Scholar

[11] Lavrynenko O., Pavlenko O., Olifan O. Characteristics of nano-sized composites based on rare earth orthoferrites and hematite, Bulletin of National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Series «Chemical Engineering, Ecology and Resource Saving». 2022. № 4 (21), P. 73-87.

DOI: 10.20535/2617-9741.4.2022.269813

Google Scholar

[12] Zgalat-Lozynskyy, O., Tischenko, N., Shirokov, O. et al. Deformation Treatment in Spark Plasma Sintering Equipment and Properties of AlON-based Ceramic. J. of Materi Eng and Perform 31, 2575–2582 (2022)

DOI: 10.1007/s11665-021-06381-0

Google Scholar

[13] V. M. Goldschmidt, Die Gesetze der Krystallochemie, Natur wissensch aften. 14 (1926) 477–485.

DOI: 10.1007/bf01507527

Google Scholar

[14] H. Zhang, N. Li, K. Li, D. Xue Structural stability and formability of ABO3–type perovskite compounds, Acta Cryst. B. 63 (2007) 812-818.

DOI: 10.1107/s0108768107046174

Google Scholar

[15] Konysheva E.Yu. Perovskite-like materials based on transition and rare-earth metals: laws of chemical bonding and thermal stability / Dissertation on the search for a doctor of chemical sciences degree - St. Petersburg 2018.

Google Scholar

[16] U. Berndt, D. Maier, C. Keller, Phasengleichgewichte in Interlanthanidenoxid-Systemen, J. Solid State Chem. 16 (1976) P. 189–195.

DOI: 10.1016/0022-4596(76)90022-0

Google Scholar

[17] O. Kornienko, S. Yushkevych, O. Bykov, A. Samelyuk, Y. Bataiev Phase Equilibrium in the Ternary CeО2–La2O3–Yb2O3 System at 1500 °С, Sol. Stat. Phenom. 331 (2022) 159-172

DOI: 10.4028/p-4000g3

Google Scholar

[18] O.A. Kornienko, O.V. Chudinovych, A.I. Bykov, A.V. Samelyuk, E. R. Andrievskaya Phase Equilibria in the La2O3–Er2O3 System in the Temperature Range 1100–1500°C, Powd. Metall. and Met. Ceram. 58 (2019) 89–98.

DOI: 10.1007/s11106-019-00051-6

Google Scholar

[19] O. Chudinovych, N. Zhdanyuk, Interaction of lanthane and lutetium at temperature 1500–1600°C, Ukrain. Chem. J., 86 (2020). 19-25. https://doi.org/10.33609/0041-6045.86.3. 2020.19-25

DOI: 10.33609/0041-6045.86.3.2020.19-25

Google Scholar

[20] Toropov, S.А., Phase Diagrams of the Refractory Oxide Systems, Binary systems. chapter 3, Leningrad, Nauka, 1987, 5, 264.

Google Scholar

[21] A. Cristina, Crystal chemistry, stability and properties of interlanthanide perovskites: A review, J. Eur. Ceram. Soc. 37 (2017) 427–440.

Google Scholar

[22] T.F. Lobunets, O.V. Chudinovych, O.V. Shyrokov, A.V. Ragulya, Study on the precursors structure formation for obtaining nanopowders with perovskite structure, Chem., Physics and technol. of surf. 11 (2020) 319-329.

Google Scholar

[23] Ivanchenko S.E.  Generalized Method for Normalizing the Degree of Thixotropy/Rheopexy to Evaluate the Structure of Powder Suspensions, Powder Metall Met Ceram (2023)

DOI: 10.1007/s11106-023-00375-4

Google Scholar

[24] Xiaokai Li,, Xiaojian Mao, Minghui Feng, Shen Qi, Benxue Jiang, Long Zhang, Fabrication of transparent La-doped Y2O3 ceramics using different La2O3 precursors, J. Europ. Ceram. Soc. 36 (2016) 2549-2553

DOI: 10.1016/j.jeurceramsoc.2016.03.024

Google Scholar

[25] So-Jin Kim, Won-Kyu Han, Sung-Goon Kang, Min-Su Han, Young-Hun Cheong, Formation of lanthanum hydroxide and oxide via precipitation, Solid State Phenom. 135 (2008) 23-26

DOI: 10.4028/www.scientific.net/SSP.135.23

Google Scholar

[26] K. Ito, K. Tezuka, and Y. Hinatsu. Preparation, magnetic susceptibility, and specific heat on interlanthanide perovskites ABO3 (A=La-Nd, B=Dy-Lu). Journal of Solid State Chemistry, 156:173–179, (2001)

DOI: 10.1006/jssc.2000.9071

Google Scholar

[27] T.S. Suzuki, Y. Sakka, K. Kitazawa Orientation amplification of alumina by colloidal filtration in a strong magnetic field and sintering, Advanc. Engin. Mater. 3 (2001) 490-492.

DOI: 10.1002/1527-2648(200107)3:7<490::aid-adem490>3.3.co;2-f

Google Scholar