[1]
R.E. Schaak et al., Perovskites by design: a toolbox of solid-state reactions, Chem. Mater. 14(2002) 1455-71.
DOI: 10.1021/cm010689m
Google Scholar
[2]
M. Aresta et al., study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J. mol. Catalysis 257(2006)149–153. https://doi.org/10.1016/j.%20molcata.2006.05.021.
DOI: 10.1016/j.molcata.2006.05.021
Google Scholar
[3]
A. Behr et al., Lindner F Improved Utilisation of Renewable Resources: New Important Derivatives of Glycerol, Green Chem. 10(2008) 13-30.
DOI: 10.1039/b710561d
Google Scholar
[4]
J.R. Ochoa-Gómez et al., Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: catalyst screening and reaction optimization, Appl. Catal. Gen. 366(2009) 315–324.
DOI: 10.1016/j.apcata.2009.07.020
Google Scholar
[5]
M.O Sonnati et al., Glycerol carbonate as a versatile building block for tomorrow: synthesis reactivity properties and applications, Green Chem. 15(2013) 283–306.
DOI: 10.1039/c2gc36525a
Google Scholar
[6]
Y. Qing et al., Production of glycerol carbonate using crude glycerol from biodiesel production with DBU as a catalyst, Chine J. Chem. Eng. 26(2018) 1912–1919.
DOI: 10.1016/j.cjche.2018.01.010
Google Scholar
[7]
S. Ramesh et al., Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres, Catal. Commun. 97(2017) 102–105.
DOI: 10.1016/j.catcom.2017.04.034
Google Scholar
[8]
E.L. Almeida et al., Production of Biofuels from Glycerol from the Biodiesel Production Process—A Brief Review. Fermentation. 9(10) (2023) 869.
DOI: 10.3390/fermentation9100869
Google Scholar
[9]
G. P. Deshmukh et al., Tuneable transesterification of glycerol with dimethyl carbonate for synthesis of glycerol carbonate and glycidol on MnO2 nanorods and efficacy of different polymorphs. Molecular Catalysis 515 (2021) 111934.
DOI: 10.1016/j.mcat.2021.111934
Google Scholar
[10]
Z. Pirzadi et al., From glycerol production to its value-added uses: A critical review, Fuel 329(2022) 125044.
DOI: 10.1016/j.fuel.2022.125044
Google Scholar
[11]
A. D. Sofía, et al., Layered double hydroxides modified by transition metals for sustainable glycerol valorization to glycerol carbonate, Catalysis Today (2023) 114415.
DOI: 10.1016/j.cattod.2023.114415
Google Scholar
[12]
M.H.A. Rahim et al., Synthesis of glycerol carbonate from industrial by-products by alcoholysis of urea: Crude glycerol and red gypsum, Fuel 357(2024) 129774.
DOI: 10.1016/j.fuel.2023.129774
Google Scholar
[13]
S. Sahani et al., Recent advances in bio-glycerol valorization to glycerol carbonate by heterogenous base-catalyzed transesterification, Molecular Catalysis 550 (2023) 113508.
DOI: 10.1016/j.mcat.2023.113508
Google Scholar
[14]
M.S. Babu et al., Indium exchanged heteropoly tungstates: Efficient catalysts for the synthesis of glycerol carbonate from glycerol and urea, Inorganica Chimica Acta (2023) 121655.
DOI: 10.1016/j.ica.2023.121655
Google Scholar
[15]
C.M. Scheid et al., Glycerol carbonate synthesis over nanostructured titanate catalysts: Effect of morphology and structure of catalyst, Chemical Engineering Research and Design 197(2023) 392-404
DOI: 10.1016/j.cherd.2023.07.039
Google Scholar
[16]
S.K. Karmee, A review on preparation and applications of glycerol carbonate: Focus biocatalysis, Biocatalysis and Biotransformation (2023) 1-22.
DOI: 10.1080/10242422.2023.2232914
Google Scholar
[17]
K. Jagadeeswaraiah et al., The role of tungsten oxide species supported on titania catalysts for the synthesis of glycerol carbonate from glycerol and urea, Catalysis Letters 146 (2016) 692-700.
DOI: 10.1007/s10562-016-1694-9
Google Scholar
[18]
D. Procopio et al,. An Overview of the Latest Advances in the Catalytic Synthesis of Glycerol Carbonate, Catalysts 12(2022) 50.
DOI: 10.3390/catal12010050
Google Scholar
[19]
A.A. Babadi et al., Emerging technologies for biodiesel production: processes, challenges, and opportunities, Biomass and Bioenergy 163 (2022): 106521.
DOI: 10.1016/j.biombioe.2022.106521
Google Scholar
[20]
R. Calmanti et al., High-temperature batch and continuous-flow transesterification of alkyl and enol esters with glycerol and its acetal derivatives, ACS Sustain. Chem. Eng. 6(2018) 3964–3973.
DOI: 10.1021/acssuschemeng.7b04297
Google Scholar
[21]
P.J.M. Lima et al., An overview on the conversion of glycerol to value‐added industrial products via chemical and biochemical routes, Biotechnology and Applied Biochemistry 69(2022) 2794-2818.
DOI: 10.1002/bab.2098
Google Scholar
[22]
A. Kaur et al., Lithium zirconate as a selective and cost-effective mixed metal oxide catalyst for glycerol carbonate production, Ind. Eng. Chem. Res. 59(2020) 2667–279.
DOI: 10.1021/acs.iecr.9b05747
Google Scholar
[23]
S. Arora et al., Valorization of glycerol into glycerol carbonate using the stable heterogeneous catalyst of Li/MCM-41, Journal of Cleaner Production 295(2021) 126437.
DOI: 10.1016/j.jclepro.2021.126437
Google Scholar
[24]
R. Sedghi et al., Turning biodiesel glycerol into oxygenated fuel additives and their effects on the behavior of internal combustion engines: A comprehensive systematic review, Renewable and Sustainable Energy Reviews 167(2022) 112805.
DOI: 10.1016/j.rser.2022.112805
Google Scholar
[25]
W. Praikaew et al., Synthesis of Glycerol Carbonate from Dimethyl Carbonate and Glycerol Using CaO Derived from Eggshells, MATEC Web. Conf. 192(2018) 3045.
DOI: 10.1051/matecconf/201819203045
Google Scholar
[26]
S. Wang et al., Disposable baby diapers waste derived catalyst for synthesizing glycerol carbonate by the transesterification of glycerol with dimethyl carbonate, J. Clean. Prod. 211(2019) 330–341.
DOI: 10.1016/j.jclepro.2018.11.196
Google Scholar
[27]
S.E. Kondawar et al., Tandem synthesis of glycidol via transesterification of glycerol with DMC over base-mixed metal oxide catalysts, ACS Sustain. Chem. Eng. 5(2017) 1763–1774.
DOI: 10.1021/acssuschemeng.6b02520
Google Scholar
[28]
R. Dhabhai et al., Purification of glycerol and its conversion to value-added chemicals: A review, Separation Science and Technology 58(2023) 1383-1402.
DOI: 10.1080/01496395.2023.2189054
Google Scholar
[29]
X. Song et al., High-efficiency and low-cost Li/ZnO catalysts for synthesis of glycerol carbonate from glycerol transesterification: the role of Li and ZnO interaction, Appl. Catal. Gen. 53(2017) 277–85.
DOI: 10.1016/j.apcata.2016.12.019
Google Scholar
[30]
F.S.H. Simanjuntak et al., Synthesis of glycerol carbonate from glycerol and dimethyl carbonate using magnesium-lanthanum mixed oxide catalyst, Chem. Eng. Sci. 94(2013) 265–270.
DOI: 10.1016/j.ces.2013.01.070
Google Scholar
[31]
R. Bai et al., Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by NaOH/γ-Al2O3, Fuel Proc. Technol. 106(2013) 209–214.
DOI: 10.1016/j.fuproc.2012.07.027
Google Scholar
[32]
K. Hu et al., KNO3/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate, J. Ind. Eng. Chem. 28(2015) 334–343.
DOI: 10.1016/j.jiec.2015.03.012
Google Scholar
[33]
R. Bai et al., Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by KF modified hydroxyapatite, J. Ind. Eng. Chem. 17(2011) 777-781.
DOI: 10.1016/j.jiec.2011.05.027
Google Scholar
[34]
G. Parameswaram et al., Transesterification of glycerol with dimethyl carbonate for the synthesis of glycerol carbonate over Mg/Zr/Sr mixed oxide base catalysts. Catal. Sci. Technol. 3(2013) 3242–3249.
DOI: 10.1039/c3cy00532a
Google Scholar
[35]
D. Singh et al., Zinc/lanthanum mixed-oxide catalyst for the synthesis of glycerol carbonate by transesterification of glycerol, Ind. Eng. Chem. Res. 53(2014) 18786–18795.
DOI: 10.1021/ie5011564
Google Scholar
[36]
J. Poolwong et al., Transesterification of dimethyl carbonate with glycerol by perovskite-based mixed metal oxide nanoparticles for the atom- efficient production of glycerol carbonate, J. Ind. Eng. Chem. 104(2021) 43–60.
DOI: 10.1016/j.jiec.2021.08.008
Google Scholar
[37]
K. Upendar et al., Low-temperature CO2 adsorption on alkali metal titanate nanotubes, Inter. J. Greenhouse Gas Control. 10(2012) 191-198.
DOI: 10.1016/j.ijggc.2012.06.008
Google Scholar
[38]
P. Liu et al.,. General Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over MgAl mixed oxide catalysts. Applied Catal A, Gen 467(2013)124-131.
DOI: 10.1016/j.apcata.2013.07.020
Google Scholar
[39]
S. Sandesh et al., Transesterification of glycerol to glycerol carbonate using KF/Al 2O3 catalyst: the role of support and basicity. Catal. Lett. 143(2013) 1226–134.
DOI: 10.1007/s10562-013-1043-1
Google Scholar
[40]
H. Dehua et al., Catalytic synthesis of glycerol carbonate from biomass-based glycerol and dimethyl carbonate over Li-La2O3 catalysts, Applied Catalysis A: General 564 (2018) 234-242.
DOI: 10.1016/j.apcata.2018.07.032
Google Scholar
[41]
P. Devi et al. Production of glycerol carbonate using a novel Ti- SBA-15 catalyst. Chem. Eng. J346(2018) 477–488.
DOI: 10.1016/j.cej.2018.04.030
Google Scholar
[42]
W. Dong et al., Ordered mesoporous BaCO3/C-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate, Science China Chemistry 58 (2015) 708-715.
DOI: 10.1007/s11426-014-5173-0
Google Scholar
[43]
M. Malyaadri et al., Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Applied Catal A, Gen 401(2011) 153–157.
DOI: 10.1016/j.apcata.2011.05.011
Google Scholar
[44]
G. Parameswaram et al., Transesterification of glycerol with dimethyl carbonate for the synthesis of glycerol carbonate over Mg/Zr/Sr mixed oxide base catalysts. Catal Sci Technol 3(2013) 3242–3249.
DOI: 10.1039/c3cy00532a
Google Scholar
[45]
G. Reyes et al., Effect of the preparation conditions on the catalytic activity of calcined Ca/Al-layered double hydroxides for the synthesis of glycerol carbonate, Applied Catalysis A: General 536 (2017) 9-17.
DOI: 10.1016/j.apcata.2017.02.013
Google Scholar
[46]
G. Pradhan et al., A greener and cheaper approach towards synthesis of glycerol carbonate from bio waste glycerol using CaO–TiO2 nano catalysts. Journal of Cleaner Production 315 (2021) 127860.
DOI: 10.1016/j.jclepro.2021.127860
Google Scholar