[1]
Sh. Makatsaria, L. Chkhartishvili, Sh. Dekanosidze and R. Chedia, Nanopowder boron compounds doped with ferromagnetic clusters for BNCT, Int. J. Adv. Nano Comput. Anal. 2(1) (2023) 1-12. https://researchlakejournals.com/index.php/IJANCA/article/view/189
Google Scholar
[2]
L. Chkhartishvili, R. Chedia, O. Tsagareishvili, M. Mirzayev, Sh. Makatsaria, N. Gogolidze, N. Barbakadze, M. Buzariashvili, O. Lekashvili and I. Jinikashvili, Preparation of neutron-capturing boron-containing nanosystems, in: Proc. 9th Int. Conf. Exh. Adv. Nano Mater., IAEMM, Victoria, 2022, pp.1-15. https://iaemm.com/Pubdetails.php (ISBN: 978-1-77835-171-6)
DOI: 10.3390/condmat8020037
Google Scholar
[3]
L. Chkhartishvili, Sh. Makatsaria and N. Gogolidze, Boron-containing fine-dispersive composites for neutron-therapy and neutron-shielding, in: Proc. Int. Sci. Prac. Conf. "Innovations and Modern Challenges – 2022", Publ. House "Tech. Univ.", Tbilisi, 2023, pp.221-226. https://publishhouse.gtu.ge/en/ (ISBN: 978-9941-28-944-6)
Google Scholar
[4]
I. Pis, S. Nappini, F. Bondino, T.O. Mentes, A. Sala, A. Locatelli and E. Magnano, Fe intercalation under graphene and hexagonal boron nitride in-plane heterostructure on Pt(111), Carbon 134 (2018) 274-282
DOI: 10.1016/j.carbon.2018.03.086
Google Scholar
[5]
W. Zhang, W. Wan, H. Zhou, J. Chen, X. Wang and X. Zhang. In-situ synthesis of magnetite / expanded graphite composite material as high rate negative electrode for rechargeable lithium batteries, J. Power Sources 223 (2013) 119-124
DOI: 10.1016/j.jpowsour.2012.09.033
Google Scholar
[6]
W. Zhang, Y. Yang, E. Ziemann, A. Be'er, M.Y. Bashouti, M. Elimelech and R. Bernstein, One-step sonochemical synthesis of a reduced graphene oxide–ZnO nanocomposite with antibacterial and antibiofouling properties, Environ. Sci. Nano 6(10) (2019) 3080-3090
DOI: 10.1039/c9en00753a
Google Scholar
[7]
J. Ahmed, Use of graphene / graphene oxide in food packaging materials: Thermomechanical, structural and barrier properties, in: Reference Module in Food Sciences, Elsevier, 2019, pp.1-22
DOI: 10.1016/B978-0-08-100596-5.22499-2
Google Scholar
[8]
J. Zhu and A.C. Lua, Antibacterial ultrafiltration membrane with silver nanoparticle impregnation by interfacial polymerization for ballast water, J. Polymer Sci. 59 (2021) 2295-2308
DOI: 10.1002/pol.20210365
Google Scholar
[9]
F. Mohanty and S.K. Swain, Silver nanoparticles decorated polyethylmethacrylate / graphene oxide composite: As packaging material, Polymer Composites (2018) 1-9
DOI: 10.1002/pc.24944
Google Scholar
[10]
P. Majumder, K. Dutta and P. Dutta, Synthesis, properties of graphene oxide–metal oxide mixed nanocomposites and their applications – Review, Int. J. Adv. Sci. Eng. 5(3) (2019) 1032-1039
DOI: 10.29294/IJASE.5.3.2019.1032-1039
Google Scholar
[11]
S. Yaragalla, K.B. Bhavitha and A.A. Athanassiou, Review on graphene based materials and their antimicrobial properties, Coatings 11 (2021) 1197(1-18)
DOI: 10.3390/coatings11101197
Google Scholar
[12]
T. Dundua, T. Sachaneli, G. Kvartskhava, N. Gamkrelidze, S. Meladze, K. Sarajishvili, M. Japharidze and I. Jinikhashvili, Preparation of graphene oxide composites containing nanosized silver, copper, and titanium oxide and study of their biocidal properties, in: L. Chkhartishvili and M. Chikhradze (Eds.), Abs. 6th Int. Conf. "Nanotechnology", Publ. House "Tech. Univ.", Tbilisi, 2021, pp.28-28
DOI: 10.52340/ns.2021.06
Google Scholar
[13]
L. Nadaraia, T. Dundua, N. Gamkrelidze, V. Tsitsishvili, N. Barbakadze and R. Chedia, Graphite foil waste to graphene: New carbon precursors for synthesis of graphene and its oxides, Key Eng. Mater. 89 (2021) 68-74
DOI: 10.4028/www.scientific.net/KEM.891.68
Google Scholar
[14]
T. Dundua, Preparation of graphene oxide composites containing nanometals and oxides from graphite foil wastes and study of their biocidal activity, Nano Studies, 21/22 (2021–2022) 91-110
DOI: 10.52340/ns.2022.06
Google Scholar
[15]
L. Nadaraia, N. Jalabadze, L. Khundadze, L. Rurua, M. Japaridze and R. Chedia, Effects of graphene on morphology, fracture toughness, and electrical conductivity of titanium dioxide, Diam. Rel. Mater. 114 (2021) 108319 (1-10)
DOI: 10.1016/j.diamond.2021.108319
Google Scholar
[16]
M. Ruidiaz–Martinez, M.A. Alvarez, M.V. Lopez–Ramon, G. Cruz–Quesada, J. Rivera–Utrilla and M. Sanchez–Polo, Hydrothermal synthesis of rGO–TiO2 composites as high-performance UV photocatalysts for ethylparaben degradation, Catalysts 10(5) (2020) 520 (1-25)
DOI: 10.3390/catal10050520
Google Scholar
[17]
S.N. Tripathi, P. Saini, D. Gupta and V. Choudhary, Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization, J. Mater. Sci. 48(18) (2013) 6223-6232
DOI: 10.1007/s10853-013-7420-8
Google Scholar
[18]
Sh. Makatsaria, Sh. Kekutia, J. Markhulia, V. Mikelashvili, L. Chkhartishvili and R. Chedia, Magnetic properties of nanopowder h-BN doped with Fe and Fe3O4 nanoclusters, Nano Studies 21/22 (2021–2022) 287-292
DOI: 10.52340/ns.2022.08
Google Scholar