Synthesis of 2D-Material(G,GO,rGO,h-BN)-Magnetic(Fe,Fe3O4)Nanocomposites

Article Preview

Abstract:

For the purpose of synthesizing 2D-Material–Magnetic nanocomposites, several new modifications of existing 2D-materials synthesis methods by exfoliation and chemical synthesis from liquid charge are developed. Using them, graphene (G), graphene oxide (GO), reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN) matrix magnetic nanocomposites for the first time are obtained by coating or intercalation their nanoparticles with ferromagnetic iron (Fe) or ferrimagnetic iron oxide – magnetite (Fe3O4). These materials are prospective for variety of high tech applications. In particular, h-BN–Fe3O4 composite nanoparticles can serve for neutron-capturing boron isotope 10B effective delivery agents in BNCT (Boron Neutron Capture Therapy) of cancer as they allow the controlling by an external magnetic field targeting to tumor tissue.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Sh. Makatsaria, L. Chkhartishvili, Sh. Dekanosidze and R. Chedia, Nanopowder boron compounds doped with ferromagnetic clusters for BNCT, Int. J. Adv. Nano Comput. Anal. 2(1) (2023) 1-12. https://researchlakejournals.com/index.php/IJANCA/article/view/189

Google Scholar

[2] L. Chkhartishvili, R. Chedia, O. Tsagareishvili, M. Mirzayev, Sh. Makatsaria, N. Gogolidze, N. Barbakadze, M. Buzariashvili, O. Lekashvili and I. Jinikashvili, Preparation of neutron-capturing boron-containing nanosystems, in: Proc. 9th Int. Conf. Exh. Adv. Nano Mater., IAEMM, Victoria, 2022, pp.1-15. https://iaemm.com/Pubdetails.php (ISBN: 978-1-77835-171-6)

DOI: 10.3390/condmat8020037

Google Scholar

[3] L. Chkhartishvili, Sh. Makatsaria and N. Gogolidze, Boron-containing fine-dispersive composites for neutron-therapy and neutron-shielding, in: Proc. Int. Sci. Prac. Conf. "Innovations and Modern Challenges – 2022", Publ. House "Tech. Univ.", Tbilisi, 2023, pp.221-226. https://publishhouse.gtu.ge/en/ (ISBN: 978-9941-28-944-6)

Google Scholar

[4] I. Pis, S. Nappini, F. Bondino, T.O. Mentes, A. Sala, A. Locatelli and E. Magnano, Fe intercalation under graphene and hexagonal boron nitride in-plane heterostructure on Pt(111), Carbon 134 (2018) 274-282

DOI: 10.1016/j.carbon.2018.03.086

Google Scholar

[5] W. Zhang, W. Wan, H. Zhou, J. Chen, X. Wang and X. Zhang. In-situ synthesis of magnetite / expanded graphite composite material as high rate negative electrode for rechargeable lithium batteries, J. Power Sources 223 (2013) 119-124

DOI: 10.1016/j.jpowsour.2012.09.033

Google Scholar

[6] W. Zhang, Y. Yang, E. Ziemann, A. Be'er, M.Y. Bashouti, M. Elimelech and R. Bernstein,  One-step sonochemical synthesis of a reduced graphene oxide–ZnO nanocomposite with antibacterial and antibiofouling properties, Environ. Sci. Nano 6(10) (2019) 3080-3090

DOI: 10.1039/c9en00753a

Google Scholar

[7] J. Ahmed, Use of graphene / graphene oxide in food packaging materials: Thermomechanical, structural and barrier properties, in: Reference Module in Food Sciences, Elsevier, 2019, pp.1-22

DOI: 10.1016/B978-0-08-100596-5.22499-2

Google Scholar

[8] J. Zhu and A.C. Lua, Antibacterial ultrafiltration membrane with silver nanoparticle impregnation by interfacial polymerization for ballast water, J. Polymer Sci. 59 (2021) 2295-2308

DOI: 10.1002/pol.20210365

Google Scholar

[9] F. Mohanty and S.K. Swain, Silver nanoparticles decorated polyethylmethacrylate / graphene oxide composite: As packaging material, Polymer Composites (2018) 1-9

DOI: 10.1002/pc.24944

Google Scholar

[10] P. Majumder, K. Dutta and P. Dutta, Synthesis, properties of graphene oxide–metal oxide mixed nanocomposites and their applications – Review, Int. J. Adv. Sci. Eng. 5(3) (2019) 1032-1039

DOI: 10.29294/IJASE.5.3.2019.1032-1039

Google Scholar

[11] S. Yaragalla, K.B. Bhavitha and A.A. Athanassiou, Review on graphene based materials and their antimicrobial properties, Coatings 11 (2021) 1197(1-18)

DOI: 10.3390/coatings11101197

Google Scholar

[12] T. Dundua, T. Sachaneli, G. Kvartskhava, N. Gamkrelidze, S. Meladze, K. Sarajishvili, M. Japharidze and I. Jinikhashvili, Preparation of graphene oxide composites containing nanosized silver, copper, and titanium oxide and study of their biocidal properties, in: L. Chkhartishvili and M. Chikhradze (Eds.), Abs. 6th Int. Conf. "Nanotechnology", Publ. House "Tech. Univ.", Tbilisi, 2021, pp.28-28

DOI: 10.52340/ns.2021.06

Google Scholar

[13] L. Nadaraia, T. Dundua, N. Gamkrelidze, V. Tsitsishvili, N. Barbakadze and R. Chedia, Graphite foil waste to graphene: New carbon precursors for synthesis of graphene and its oxides, Key Eng. Mater. 89 (2021) 68-74

DOI: 10.4028/www.scientific.net/KEM.891.68

Google Scholar

[14] T. Dundua, Preparation of graphene oxide composites containing nanometals and oxides from graphite foil wastes and study of their biocidal activity, Nano Studies, 21/22 (2021–2022) 91-110

DOI: 10.52340/ns.2022.06

Google Scholar

[15] L. Nadaraia, N. Jalabadze, L. Khundadze, L. Rurua, M. Japaridze and R. Chedia, Effects of graphene on morphology, fracture toughness, and electrical conductivity of titanium dioxide, Diam. Rel. Mater. 114 (2021) 108319 (1-10)

DOI: 10.1016/j.diamond.2021.108319

Google Scholar

[16] M. Ruidiaz–Martinez, M.A. Alvarez, M.V. Lopez–Ramon, G. Cruz–Quesada, J. Rivera–Utrilla and M. Sanchez–Polo, Hydrothermal synthesis of rGO–TiO2 composites as high-performance UV photocatalysts for ethylparaben degradation, Catalysts 10(5) (2020) 520 (1-25)

DOI: 10.3390/catal10050520

Google Scholar

[17] S.N. Tripathi, P. Saini, D. Gupta and V. Choudhary, Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization, J. Mater. Sci. 48(18) (2013) 6223-6232

DOI: 10.1007/s10853-013-7420-8

Google Scholar

[18] Sh. Makatsaria, Sh. Kekutia, J. Markhulia, V. Mikelashvili, L. Chkhartishvili and R. Chedia, Magnetic properties of nanopowder h-BN doped with Fe and Fe3O4 nanoclusters, Nano Studies 21/22 (2021–2022) 287-292

DOI: 10.52340/ns.2022.08

Google Scholar