[1]
V Kumar, W Chen, X Zhang, Y Jiang, P Koshy, CC Sorrrell . Properties and performance of photocatalytic CeO2, TiO2, and CeO2–TiO2 layered thin films. Ceramics international 45 (2019) 22085-22094.
DOI: 10.1016/j.ceramint.2019.07.225
Google Scholar
[2]
H. Yan, J. Xue, W Chen, J Tang, L Zhong, T Zhou, X Zhao , Optimizing physical properties of Co-doped ZnO nanoparticles: Controlling oxygen vacancy and carrier concentration. Vacuum 192 (2021) 110488.
DOI: 10.1016/j.vacuum.2021.110488
Google Scholar
[3]
Y Fana, Y Xu, Y, Wang, Y Sun, Fabrication and characterization of Co-doped ZnO nanodiscs for selective TEA sensor applications with high response, high selectivity and ppb-level detection limit. Journal of Alloys and Compounds 876 (2021) 160170.
DOI: 10.1016/j.jallcom.2021.160170
Google Scholar
[4]
S Kannan, SP Subiramaniyam, SU Lavanisadevi, Controllable synthesis of ZnO nanorods at different temperatures for enhancement of dye-sensitized solar cell performance. Materials Letters 274 (2020) 127994.
DOI: 10.1016/j.matlet.2020.127994
Google Scholar
[5]
VF Nunes, ES Teixeira, PHM Junior, Almeida AFL, Freire FNA, Study of electrophoretic deposition of ZnO photoanodes on fluorine-doped tin oxide (FTO) glass for dye-sensitized solar cells (DSSCs). Cerâmica 68 (2022) 120-125.
DOI: 10.1590/0366-69132022683853219
Google Scholar
[6]
C Bairam, Y Yalçın, HI Efkere, E Çokduygulular, Ç Çetinkaya, B Kınacı, S Özçelik, Structural, morphological, optical and electrical properties of the Tidoped-ZnO (TZO) thin film prepared by RF sputter technique. Physica B 616 (2021) 413126.
DOI: 10.1016/j.physb.2021.413126
Google Scholar
[7]
VF Nunes, FM Lima, ES Teixeira, AFL Almeida, FNA Freire, Effects of tin on the performance of ZnO photoanode for DSSC. Revista Matéria 26 (2021).
DOI: 10.1590/s1517-707620210004.1312
Google Scholar
[8]
P. Dhamodharan, J Chen, C Manoharan, Fabrication of In doped ZnO thin films by spray pyrolysis as photoanode in DSSCs. Surfaces and Interfaces 23 (2021) 100965.
DOI: 10.1016/j.surfin.2021.100965
Google Scholar
[9]
M. Bhogaita, D. Devaprakasam, Hybrid photoanode of TiO2-ZnO synthesized by co-precipitation route for dye-sensitized solar cell using phyllanthus reticulatas pigment sensitizer. Solar Energy 214 (2021) 517–530.
DOI: 10.1016/j.solener.2020.12.009
Google Scholar
[10]
A. Badawi, MG Althobaiti, E.E. Ali, S.S. Alharthi, AN Alharbi, A comparative study of the structural and optical properties of transitionmetals (M = Fe, Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications. Optical Materials 124 (2022) 112055.
DOI: 10.1016/j.optmat.2022.112055
Google Scholar
[11]
V. Ganesh, I.S. Yahia, A. AlFaify, M. Shkir, Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. Journal of Physics and Chemistry of Solids 100 (2017) 115–125.
DOI: 10.1016/j.jpcs.2016.09.022
Google Scholar
[12]
HMA Hamid, Z Çelik-Butler, Characterization and performance analysis of Li-doped ZnO nanowire as a nano-sensor and nano-energy harvesting element. Nano Energy 50 (2018)159-168.
DOI: 10.1016/j.nanoen.2018.05.023
Google Scholar
[13]
K Bang, G Son, M Son, J Jun, H An, KH Baik, J Myoung, M Ham, Effects of Li doping on the structural and electrical properties of solution-processed ZnO films for high-performance thin-film transistors. Journal of Alloys and Compounds 739 (2018) 41- 46.
DOI: 10.1016/j.jallcom.2017.12.186
Google Scholar
[14]
P. Manzhi, M.B. Alam, R. Kumari, R. Krishna, RK Singh, R Srivastava, O.P. Sinha, Li-doped ZnO nanostructures for the organic light emitting diode application. Vacuum 146 (2017) 462-467.
DOI: 10.1016/j.vacuum.2017.07.018
Google Scholar
[15]
M. Chandrasekar, S. Panimalar, R. Uthrakumar, M. Kumar, MER Saravanan, G Gobi, P. Matheswaran, C Inmozhi, K Kaviyarasu, Preparation and characterization studies of pure and Li+ doped ZnO nanoparticles for optoelectronic applications. Materials Today: Proceedings 36 (2021) 228–231.
DOI: 10.1016/j.matpr.2020.03.228
Google Scholar
[16]
S. Aksoy, O Polat, K Gorgun, Y Caglar, M Caglar, Li doped ZnO based DSSC: Characterization and preparation of nanopowders and electrical performance of its DSSC. Physica E 121 (2020) 114127.
DOI: 10.1016/j.physe.2020.114127
Google Scholar
[17]
M Hjiri, MS Aida, OM Lemine, LE Mir, Study of defects in Li-doped ZnO thin films. Materials Science in Semiconductor Processing 89 (2019) 149–153.
DOI: 10.1016/j.mssp.2018.09.010
Google Scholar
[18]
R Ariza, F Pavon, A Urbieta , P Fernández, Study of the influence of dopant precursor on the growth and properties of Li-doped ZnO. Journal of Physics and Chemistry of Solids 139 (2020) 109354.
DOI: 10.1016/j.jpcs.2020.109354
Google Scholar
[19]
M Muhammad, Z Hassan, S Mohammad, S Rajamanickam, SM Abed, MGB Ashiq. Realization of UV-C absorption in ZnO nanostructures using fluorine and silver co-doping. Colloid and Interface Science Communications 47 (2022) 100588
DOI: 10.1016/j.colcom.2022.100588
Google Scholar
[20]
K Pugazhendhi, B Praveen, DJ Sharmila, JSS Mary, PN Kumar, V Bharathilenin, JM Shyla Plasmonic TiO2/Al@ZnO nanocomposite-based novel dye-sensitized solar cell with 11.4% power conversion efficiency. Solar Energy 215 (2021) 443-450.
DOI: 10.1016/j.solener.2020.12.031
Google Scholar
[21]
GK Upadhyay, JK Rajput, TK Pathak, V Kumar, LP Purohit. Synthesis of ZnO:TiO2 nanocomposites for photocatalyst application in visible light. Vacuum 160 (2019) 154-163.
DOI: 10.1016/j.vacuum.2018.11.026
Google Scholar
[22]
T Das, D Das, K Parashar, SKS Parashar, AV Anupama, B Sahoo, BK Das. Infuence of Mg doping on structural, dielectric properties and Urbach energy in ZnO ceramics. J Mater Sci: Mater Electron, 34 (2023) 2056.
DOI: 10.1007/s10854-023-11497-1
Google Scholar
[23]
M Kaur, V Kumar, J Singh, J Datt, R Sharma. Effect of Cu-N co-doping on the dielectric properties of ZnO nanoparticles. Materials Technology 37 (2022) 2644-2658.
DOI: 10.1080/10667857.2022.2055909
Google Scholar
[24]
VF Nunes, FM Lima, ES Teixeira, PHM Junior, Almeida AFL, Freire FNA. Synthesis of TiO2/ZnO photoanodes on FTO conductive glass for photovoltaic applications, Cerâmica, 69 (2023) 79-86.
DOI: 10.1590/0366-69132023693893383
Google Scholar
[25]
K Meziane, AE Hamidi, E Elmahboub, S. Diliberto, A. El Hichou, A. Almaggoussi, N. Stein, Effect of lithium salt precursors on the physical properties of ZnO-Li thin films. Thin Solid Films 725 (2021) 138644.
DOI: 10.1016/j.tsf.2021.138644
Google Scholar
[26]
M Kaur, V Kumar, J Datt, Dielectric properties of Zn1−xCuxO0.997N0.003 nanopowders synthesised via sol–gel method. Journal of the Australian Ceramic Society 59 (2023) 657-669.
DOI: 10.1007/s41779-023-00864-0
Google Scholar
[27]
AH Javed, N Shahzad, MA Khan, M Ayub, N Iqbal, M Hassan, N Hussain, MI Rameel, MI Shahzad, Effect of ZnO nanostructures on the performance of dye sensitized solar cells. Solar Energy 230 (2021) 492–500.
DOI: 10.1016/j.solener.2021.10.045
Google Scholar
[28]
M Hezam, MQ Alsubaie, A Algarni, H Ghaitan, J Labis, M Alduraibi, ZnO Nanosheet-Nanowire morphology tuning for Dye-sensitized solar cell applications. Chemical Physics Letters 780 (2021) 1389537.
DOI: 10.1016/j.cplett.2021.138953
Google Scholar
[29]
R. Homcheunjit, P Pluengphon, A Tubtimtae, P Teesetsopon, Structural, optical, and electrical properties via two simple routes for the synthesis of multi-phase potassium antimony oxide thin films. Physica B 637 (2022) 413885.
DOI: 10.1016/j.physb.2022.413885
Google Scholar
[30]
M. Patel, A. Chavda, I Mukhopadhyay, J Kim, A Ray, Nanostructured SnS with inherent anisotropic optical properties for high photoactivity. Nanoscale 8 (2016) 2293.
DOI: 10.1039/c5nr06731f
Google Scholar
[31]
N. Baydogan, T. Ozdurmusoglu, H Cimenoglu, AB Tugrul, Refractive Index and Extinction Coefficient of ZnO:Al Thin Films Derived by Sol-Gel Dip Coating Technique. Defect and Diffusion Forum 334-335 (2013) 290-293.
DOI: 10.4028/www.scientific.net/ddf.334-335.290
Google Scholar
[32]
VF Nunes, PHFM Júnior, AFL Almeida, FNA Freire, Surface properties of Al2O3:ZnO thin films growth on FTO for photovoltaic application. Next Materials (2023).
DOI: 10.1016/j.nxmate.2023.100069
Google Scholar