Effects of Lithium Salt on Optical and Structural Properties of ZnO Thin Films

Article Preview

Abstract:

Thin film semiconductors are broadly applied in optical and energy conversion devices. Some thin films comprise titanium dioxide, tin oxide, and zinc oxide. The characteristics of the thin films can be changed according to their application. Zinc oxide semiconductors thin films were combined with different concentrations of LiClO4, varying between 5 and 15% weight percentage. This study aimed to qualify and quantify the morphological, structure, and optical changes in ZnO affected by the presence of lithium salt in the microstructure. The x-ray measurements demonstrated larger polycrystalline sizes, a maximum of 57.53 nm. The band gap energy values lowered to 3.16 eV, lower than the usual 3.37 eV, and reflectance values reached 80%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-66

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V Kumar, W Chen, X Zhang, Y Jiang, P Koshy, CC Sorrrell . Properties and performance of photocatalytic CeO2, TiO2, and CeO2–TiO2 layered thin films. Ceramics international 45 (2019) 22085-22094.

DOI: 10.1016/j.ceramint.2019.07.225

Google Scholar

[2] H. Yan, J. Xue, W Chen, J Tang, L Zhong, T Zhou, X Zhao , Optimizing physical properties of Co-doped ZnO nanoparticles: Controlling oxygen vacancy and carrier concentration. Vacuum 192 (2021) 110488.

DOI: 10.1016/j.vacuum.2021.110488

Google Scholar

[3] Y Fana, Y Xu, Y, Wang, Y Sun, Fabrication and characterization of Co-doped ZnO nanodiscs for selective TEA sensor applications with high response, high selectivity and ppb-level detection limit. Journal of Alloys and Compounds 876 (2021) 160170.

DOI: 10.1016/j.jallcom.2021.160170

Google Scholar

[4] S Kannan, SP Subiramaniyam, SU Lavanisadevi, Controllable synthesis of ZnO nanorods at different temperatures for enhancement of dye-sensitized solar cell performance. Materials Letters 274 (2020) 127994.

DOI: 10.1016/j.matlet.2020.127994

Google Scholar

[5] VF Nunes, ES Teixeira, PHM Junior, Almeida AFL, Freire FNA, Study of electrophoretic deposition of ZnO photoanodes on fluorine-doped tin oxide (FTO) glass for dye-sensitized solar cells (DSSCs). Cerâmica 68 (2022) 120-125.

DOI: 10.1590/0366-69132022683853219

Google Scholar

[6] C Bairam, Y Yalçın, HI Efkere, E Çokduygulular, Ç Çetinkaya, B Kınacı, S Özçelik, Structural, morphological, optical and electrical properties of the Tidoped-ZnO (TZO) thin film prepared by RF sputter technique. Physica B 616 (2021) 413126.

DOI: 10.1016/j.physb.2021.413126

Google Scholar

[7] VF Nunes, FM Lima, ES Teixeira, AFL Almeida, FNA Freire, Effects of tin on the performance of ZnO photoanode for DSSC. Revista Matéria 26 (2021).

DOI: 10.1590/s1517-707620210004.1312

Google Scholar

[8] P. Dhamodharan, J Chen, C Manoharan, Fabrication of In doped ZnO thin films by spray pyrolysis as photoanode in DSSCs. Surfaces and Interfaces 23 (2021) 100965.

DOI: 10.1016/j.surfin.2021.100965

Google Scholar

[9] M. Bhogaita, D. Devaprakasam, Hybrid photoanode of TiO2-ZnO synthesized by co-precipitation route for dye-sensitized solar cell using phyllanthus reticulatas pigment sensitizer. Solar Energy 214 (2021) 517–530.

DOI: 10.1016/j.solener.2020.12.009

Google Scholar

[10] A. Badawi, MG Althobaiti, E.E. Ali, S.S. Alharthi, AN Alharbi, A comparative study of the structural and optical properties of transitionmetals (M = Fe, Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications. Optical Materials 124 (2022) 112055.

DOI: 10.1016/j.optmat.2022.112055

Google Scholar

[11] V. Ganesh, I.S. Yahia, A. AlFaify, M. Shkir, Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. Journal of Physics and Chemistry of Solids 100 (2017) 115–125.

DOI: 10.1016/j.jpcs.2016.09.022

Google Scholar

[12] HMA Hamid, Z Çelik-Butler, Characterization and performance analysis of Li-doped ZnO nanowire as a nano-sensor and nano-energy harvesting element. Nano Energy 50 (2018)159-168.

DOI: 10.1016/j.nanoen.2018.05.023

Google Scholar

[13] K Bang, G Son, M Son, J Jun, H An, KH Baik, J Myoung, M Ham, Effects of Li doping on the structural and electrical properties of solution-processed ZnO films for high-performance thin-film transistors. Journal of Alloys and Compounds 739 (2018) 41- 46.

DOI: 10.1016/j.jallcom.2017.12.186

Google Scholar

[14] P. Manzhi, M.B. Alam, R. Kumari, R. Krishna, RK Singh, R Srivastava, O.P. Sinha, Li-doped ZnO nanostructures for the organic light emitting diode application. Vacuum 146 (2017) 462-467.

DOI: 10.1016/j.vacuum.2017.07.018

Google Scholar

[15] M. Chandrasekar, S. Panimalar, R. Uthrakumar, M. Kumar, MER Saravanan, G Gobi, P. Matheswaran, C Inmozhi, K Kaviyarasu, Preparation and characterization studies of pure and Li+ doped ZnO nanoparticles for optoelectronic applications. Materials Today: Proceedings 36 (2021) 228–231.

DOI: 10.1016/j.matpr.2020.03.228

Google Scholar

[16] S. Aksoy, O Polat, K Gorgun, Y Caglar, M Caglar, Li doped ZnO based DSSC: Characterization and preparation of nanopowders and electrical performance of its DSSC. Physica E 121 (2020) 114127.

DOI: 10.1016/j.physe.2020.114127

Google Scholar

[17] M Hjiri, MS Aida, OM Lemine, LE Mir, Study of defects in Li-doped ZnO thin films. Materials Science in Semiconductor Processing 89 (2019) 149–153.

DOI: 10.1016/j.mssp.2018.09.010

Google Scholar

[18] R Ariza, F Pavon, A Urbieta , P Fernández, Study of the influence of dopant precursor on the growth and properties of Li-doped ZnO. Journal of Physics and Chemistry of Solids 139 (2020) 109354.

DOI: 10.1016/j.jpcs.2020.109354

Google Scholar

[19] M Muhammad, Z Hassan, S Mohammad, S Rajamanickam, SM Abed, MGB Ashiq. Realization of UV-C absorption in ZnO nanostructures using fluorine and silver co-doping. Colloid and Interface Science Communications 47 (2022) 100588

DOI: 10.1016/j.colcom.2022.100588

Google Scholar

[20] K Pugazhendhi, B Praveen, DJ Sharmila, JSS Mary, PN Kumar, V Bharathilenin, JM Shyla Plasmonic TiO2/Al@ZnO nanocomposite-based novel dye-sensitized solar cell with 11.4% power conversion efficiency. Solar Energy 215 (2021) 443-450.

DOI: 10.1016/j.solener.2020.12.031

Google Scholar

[21] GK Upadhyay, JK Rajput, TK Pathak, V Kumar, LP Purohit. Synthesis of ZnO:TiO2 nanocomposites for photocatalyst application in visible light. Vacuum 160 (2019) 154-163.

DOI: 10.1016/j.vacuum.2018.11.026

Google Scholar

[22] T Das, D Das, K Parashar, SKS Parashar, AV Anupama, B Sahoo, BK Das. Infuence of Mg doping on structural, dielectric properties and Urbach energy in ZnO ceramics. J Mater Sci: Mater Electron, 34 (2023) 2056.

DOI: 10.1007/s10854-023-11497-1

Google Scholar

[23] M Kaur, V Kumar, J Singh, J Datt, R Sharma. Effect of Cu-N co-doping on the dielectric properties of ZnO nanoparticles. Materials Technology 37 (2022) 2644-2658.

DOI: 10.1080/10667857.2022.2055909

Google Scholar

[24] VF Nunes, FM Lima, ES Teixeira, PHM Junior, Almeida AFL, Freire FNA. Synthesis of TiO2/ZnO photoanodes on FTO conductive glass for photovoltaic applications, Cerâmica, 69 (2023) 79-86.

DOI: 10.1590/0366-69132023693893383

Google Scholar

[25] K Meziane, AE Hamidi, E Elmahboub, S. Diliberto, A. El Hichou, A. Almaggoussi, N. Stein, Effect of lithium salt precursors on the physical properties of ZnO-Li thin films. Thin Solid Films 725 (2021) 138644.

DOI: 10.1016/j.tsf.2021.138644

Google Scholar

[26] M Kaur, V Kumar, J Datt, Dielectric properties of Zn1−xCuxO0.997N0.003 nanopowders synthesised via sol–gel method. Journal of the Australian Ceramic Society 59 (2023) 657-669.

DOI: 10.1007/s41779-023-00864-0

Google Scholar

[27] AH Javed, N Shahzad, MA Khan, M Ayub, N Iqbal, M Hassan, N Hussain, MI Rameel, MI Shahzad, Effect of ZnO nanostructures on the performance of dye sensitized solar cells. Solar Energy 230 (2021) 492–500.

DOI: 10.1016/j.solener.2021.10.045

Google Scholar

[28] M Hezam, MQ Alsubaie, A Algarni, H Ghaitan, J Labis, M Alduraibi, ZnO Nanosheet-Nanowire morphology tuning for Dye-sensitized solar cell applications. Chemical Physics Letters 780 (2021) 1389537.

DOI: 10.1016/j.cplett.2021.138953

Google Scholar

[29] R. Homcheunjit, P Pluengphon, A Tubtimtae, P Teesetsopon, Structural, optical, and electrical properties via two simple routes for the synthesis of multi-phase potassium antimony oxide thin films. Physica B 637 (2022) 413885.

DOI: 10.1016/j.physb.2022.413885

Google Scholar

[30] M. Patel, A. Chavda, I Mukhopadhyay, J Kim, A Ray, Nanostructured SnS with inherent anisotropic optical properties for high photoactivity. Nanoscale 8 (2016) 2293.

DOI: 10.1039/c5nr06731f

Google Scholar

[31] N. Baydogan, T. Ozdurmusoglu, H Cimenoglu, AB Tugrul, Refractive Index and Extinction Coefficient of ZnO:Al Thin Films Derived by Sol-Gel Dip Coating Technique. Defect and Diffusion Forum 334-335 (2013) 290-293.

DOI: 10.4028/www.scientific.net/ddf.334-335.290

Google Scholar

[32] VF Nunes, PHFM Júnior, AFL Almeida, FNA Freire, Surface properties of Al2O3:ZnO thin films growth on FTO for photovoltaic application. Next Materials (2023).

DOI: 10.1016/j.nxmate.2023.100069

Google Scholar