Green Synthesis, Hybridization of SiO2 by Alkaline -Acid Leaching Method and their Optical and Structural Properties Using Rice Husk and Anogeissus leiocarpus Extract

Article Preview

Abstract:

Silicon oxide is widely used as a thin film to improve the surface properties of materials, because it is of anti-resistance, hardness, corrosion resistance, dielectric, optical transparency and high delivery property etc. Therefore. Recent growing interest and efforts of scientists in this area are due to vitality in achievement of a better quality of life and health care for human beings, designing novel methods of making them more effective through hybridization with silver nanoparticles. Hence the need for nanoparticles capable of transmitting light with an ‘enhanced’ optical property for optoelectronics. In this study, silica was extracted from rice husk ash (RHA) using alkaline/acid leaching method, the AgNps was synthesized from Anogeissus leiocarpus extract using water extraction process, while the hybridization of silica with AgNps was carried out using in-situ and co-mixing method. Characterization was achieved using UV-Visible to confirmed the presence of silica at 290 nm, 291 nm, and 295 nm at different time intervals of 0, 60, 90. Changes in intensities of the bands indicate perfect hybridization with an enhancement in optical property. The XRD pattern of the silica-silver nanoparticles showed crystalline peaks at 2θ = 22.0o, 26.5o,29.5o 41o, which have been keenly indexed as face centred cubic Ago nanocrystals arising from Anogeissus leiocarpus extract. The increase in absorbance value of silica from (0.5 to 1.45, 1.50 respectively) confirms the improvement in optical properties of silica due to presence of AgNPs. The SEM analysis revealed the cap shaped spherical morphology and uniform size distribution of the nanohybrids within the range of 18.20 nm. Capping obtained is an evidence of organic matter in the plant extract. The percentage elemental compositions of Ag, Si, C and O in the nanohybrids were revealed by EDX analysis where Ag and Si are dominant. Therefore, silica-silver nanocomposite can be used as improved raw material in optical, ceramics and other relevant industries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-85

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.D. Pomogailo, Polymer sol – gel synthesis of hybrid nanocomposite. Colloid Journal of chemistry (2005). 67: 6-7.

Google Scholar

[2] E. Marangon, F. E. Kulzer, G. D. Cocco, R. S. Meichtry, L. C. Mendonça, L. E. Kosteski & M. de Jesus Dias de Oliveira. Mortars produced with an environmentally sustainable rice HUSK silica: Rheological properties. Journal of Cleaner Production, 125561. doi:10.1016/j.jclepro. (2020). 125-561.

DOI: 10.1016/j.jclepro.2020.125561

Google Scholar

[3] J. Schlomach & M. Kind (2004). Investigations on the semi-batch precipitation of silica.

Google Scholar

[4] A. Özcan, F. Hamid & A. A. Özcan. Synthesizing of A Nanocomposite Based on The Formation of Silver Nanoparticles on Fumed Silica to Develop An Electro chemical Sensor for Carbendazim Detection. Talanta, 121591. doi: 10. 101 6/j.talanta. (2020).121591.

DOI: 10.1016/j.talanta.2020.121591

Google Scholar

[5] A. Shah, I. Hussain, G. Murtaza, Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity. International Journal of Biological Macromolecules, (2018). 116520–529

DOI: 10.1016/j.ijbiomac.2018.05.057

Google Scholar

[6] E.E. Elemike, E.O. Dare, I.D. Samuel, J.C. Onwuka, 2-Imino-(3,4-dimethoxybenzyl) ethanesulfonic acid Schiff base anchored silver nanocomplex mediated by sugarcane juice and their antibacterial activities. Journal of Applied Research and Technology, (2016), S166564231600002X–. doi:10.1016/j.jart. (2015).12.001

DOI: 10.1016/j.jart.2015.12.001

Google Scholar

[7] A. D. Pomogailo, Polymer sol – gel synthesis of hybrid nanocomposite. Colloid Journal of chemistry (2005). 67: 6-7

Google Scholar

[8] C.P. Faizul, C. Abdullah, B. Fazlul, Review of Extraction of Silica from Agricultural Wastes Using Acid Leaching Treatment. Advanced Materials Research, 626, (2012), 997–1000.

DOI: 10.4028/www.scientific.net/amr.626.997

Google Scholar

[9] I. M. Joni, Rukiah, Panatarani, Camellia, AIP Conference Proceedings [AIP Publishing 3RD International Conference on Condensed Matter and Applied Physics (ICC-2019) - Bikaner, India (14â-15 October 2019)] 3RD International Conference on Condensed Matter and Applied Physics (ICC-2019) - Synthesis of silica particles by precipitation method of sodium silicate: Effect of temperature, pH and mixing technique., (2020), 080018–.

DOI: 10.1063/5.0003074

Google Scholar

[10] J.A. Adekoya, E.O. Dare, M.A. Mesubi, N. Revaprasadu, Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles. Journal of Materials, (2014). 1–9.

DOI: 10.1155/2014/184216

Google Scholar

[11] P. Yao, A. Zou, Z. Tian, W. Meng, X. Fang, T. Wu & J. Cheng Construction and characterization of a temperature-responsive nanocarrier for imidacloprid based on mesoporoussilica nanoparticles. Colloids and Surfaces B: Bio interfaces, (2020). 111464. doi:10. 1016/j.colsurfb.2020.111464

DOI: 10.1016/j.colsurfb.2020.111464

Google Scholar

[12] D.D. Evanoff & G. Chumanov Synthesis and Optical Properties of Silver Nano particles and Arrays. Chem PhysChem, (2005). 6(7), 1221–1231. doi:10.1002 /cphc.200500113

DOI: 10.1002/cphc.200500113

Google Scholar

[13] J.A. Natsuki, Review of Silver Nanoparticles: Synthesis Methods, Properties and Applications. Int. J. Mater. Sci. Appl. (2015). 4, 325.

Google Scholar

[14] Journal of Colloid and Interface Science, 277(2), 316 326. doi:10.1016/ j.jcis. (2004). 0 4.051

Google Scholar

[15] G. Pavoski, R. Kalikoski, G. Souza, L. Fernando Wentz Brum, C. Dos Santos, A. Abo Markeb, J. Henrique Zimnoch dos Santos, X. Font, I. dell'Erba, G. Barrera Galland, Synthesis of polyethylene/silica-silver nanocomposites with antibacterial properties by in situ polymerization. European Polymer Journal, (2018), S0014305718309868–

DOI: 10.1016/j.eurpolymj.2018.07.011

Google Scholar

[16] T. Cao, Z. Li, Y. Xiong, Y. Yang, S. Xu, T.M. Bisson, R. Gupta, Z. Xu, Silica-Silver Nanocomposites as Regenerable Sorbents for Hg0 Removal from Flue Gases. Environmental Science & Technology, (2017), acs.est.7b01701–

DOI: 10.1021/acs.est.7b01701

Google Scholar

[17] A H. Labulo, T.E Adesuji, C.O. Oseghale, J. Omojola, O.S. Bodede, E.O. Dare, A.A. Akinsiku, Biosynthesis of silver nanoparticles using Garcinia kola and its antimicrobial potential. Africa Journal of Pure and Applied Chemistry (2016), 10(1), 1–.

DOI: 10.5897/ajpac2015.0650

Google Scholar

[18] A. Özcan, F. Hamid & A. A. Özcan. Synthesizing of A Nanocomposite Based on The Formation of Silver Nanoparticles on Fumed Silica to Develop an Electro chemical Sensor for Carbendazim Detection. Talanta, 121591. doi: 10. 101 6/j.talanta. (2020).121591.

DOI: 10.1016/j.talanta.2020.121591

Google Scholar

[19] M. El-Shetehy, A. Moradi, M. Maceroni, D. Reinhardt, A. Petri-Fink, B. Rothen-Rutishauser, & F. Schwab Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology. (2020). 11—116

DOI: 10.1038/s41565-020-00812-0

Google Scholar

[20] P. Krishnamoorthy, T. Jayalakshmi, Preparation, characterization and synthesis of silver nanoparticles by using phyllanthusniruri for the antimicrobial activity and cytotoxic effects. Journal of Chemical and Pharmaceutical Research, 4(11) (2012):4783-4794. Available online www.jocpr.com.

Google Scholar

[21] L. Sun and K. Gong, Review, silicon-based materials from rice husks and their application. Industrial Enginee Chemical Resources 40: (2009) 58615877.

Google Scholar

[22] S. Mehmood, N. Ali, F. Ali, F. Haq, M. Haroon & S. Fahad The Influence of Surface Modified Silica Nanoparticles: Properties of Epoxy Nanocomposites. Zeitschrift Für Physikalische Chemie, (2020). 0(0)

DOI: 10.1515/zpch-2019-1544

Google Scholar

[23] E.E. Elemike, E.O. Dare, I.D. Samuel, J.C. Onwuka, 2-Imino-(3,4-dimethoxy benzyl) ethanesulfonic acid Schiff base anchored silver nanocomplex mediated by sugarcane juice and their antibacterial activities. Journal of Applied Research and Technology, (2016), S166564231600002X. doi: 10.1016/j.jart. (2015).12.001

DOI: 10.1016/j.jart.2015.12.001

Google Scholar

[24] E.O. Dare, C.O. Oseghale, A.H. Labulo, E.T. Adesuji, E.E. Elemike, J.C. Onwuka, J.T. Bamgbose, Green synthesis and growth kinetics of nanosilver under bio-diversified plant extracts influence. Journal of Nanostructure in Chemistry, 5(1), (2014) 85–94. doi:10 1007/ 40097-014-0139-5

DOI: 10.1007/s40097-014-0139-5

Google Scholar

[25] P.F., Garrido, M., Calvelo, A., Blanco-González, U., Veleiro, F., Suárez, D., Conde, A. Cabezón, Á. Piñeiro, R. Garcia-Fandino, Inter. J. Pharma. (2020), 588, 119689.

DOI: 10.1016/j.ijpharm.2020.119689

Google Scholar

[26] M.S., John, J.A., Nagoth, K.P., Ramasamy, A.,Mancini, G., Giuli, C., Miceli, S. Pucciarelli, Synthesis of Bioactive Silver Nanoparticles Using New Bacterial Strains from an Antarctic Consortium. Mar. Drugs (2022), 20, 558. [CrossRef]

DOI: 10.3390/md20090558

Google Scholar

[27] O.J. Olaniyan, E.O. Dare, O. R. Adetunji, O.O. Adedeji, S.O. Ogungbesan, Synthesis and Characterization of Chitosan-Silver Nanocomposite Film. Nano Hybrids and Composites, 11(2016), 22–29. doi:10.4028/www.scientific.net /NHC.11.22

DOI: 10.4028/www.scientific.net/nhc.11.22

Google Scholar

[28] S. Montalvo-Quirós, S. Gómez-Graña, M. Vallet-Regí, R. C. Prados-Rosales, B. González &J. L. Luque-Garcia. Mesoporous silica nanoparticles containing silver as novel anti mycobacterial agents against Mycobacterium tuberculosis. Colloids and Surfaces B Biointerfaces, (2021). 197, 111405. doi:10.1016 /j.colsurfb .2020. 111405.

DOI: 10.1016/j.colsurfb.2020.111405

Google Scholar

[29] K. Ariga, A. Vinu, Y. Yamauchi, O. Ji, J.P. Hill, Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 85(1), (2012). 1–32

DOI: 10.1246/bcsj.20110162

Google Scholar

[30] V.B. Carmona, R.M. Oliveira, W.T.L. Silva, L.H.C. Mattoso, J.M. Marconcini, Nanosilica from rice husk: Extraction and characterization, 43 (2013). Doi:10. 1016/j.indcrop.2012.06.050

DOI: 10.1016/j.indcrop.2012.06.050

Google Scholar

[31] U. Kalapathy. A simple method for production of pure silica from rice hull ash. Bioresource Technology, (2000). 73(3), 257–262. doi:10.1016/s0960-8524(99)00127-3 S.T.

DOI: 10.1016/s0960-8524(99)00127-3

Google Scholar

[32] T. Parandhaman, A. Das, B. Ramalingam, D. Samanta, T.P. Sastry, A.B. Mandal, S.K. Das, Antimicrobial behavior of biosynthesized silica–silver nanocomposite for water disinfection: A mechanistic perspective. Journal of Hazardous Materials, 290 (2015), 117–126.doi:10.1016/j. jhazmat. (2015).02.061

DOI: 10.1016/j.jhazmat.2015.02.061

Google Scholar

[33] H.J. Zhai, D. W. Sun, & H. S. Wang (2006). Catalytic Properties of Silica/Silver Nanocomposites. Journal of Nanoscience and Nanotechnology, (2006).6 (7), 1968–1972.doi: 10. 1166/jnn. 320.

DOI: 10.1166/jnn.2006.320

Google Scholar

[34] Z. Li, Y. Mu, C. Peng, M. F. Lavin, H. Shao & Z. Du. Understanding the mechanisms of silica nanoparticles for nanomedicine. WIREs Nanomedicine and Nanobiotechnology. (2020).

DOI: 10.1002/wnan.1658

Google Scholar