Structure and Characteristics of Opal - Bi12GeO20 and Opal - NaBi(MoO4)2 Nanocrystalline Composites

Article Preview

Abstract:

In this work we investigate and analyze phase composition and structure parameters of the nanocomposites obtained by the melt-based impregnation of porous opal matrices with dielectrics prospective for optoelectronics applications Bi12GeO20 and NaBi (MoO4)2. The embedded material is formed inside opal pores as nanocrystals with an average linear size not exceeding 50 nm and modified lattice parameters. In the case of impregnating opals with Bi12GeO20, new additional compounds are produced and transformation of opal matrix from amorphous to crystalline state is observed. These effects are discussed in the framework of the interaction of bismuth cations with the surface of the 285 nm SiO2 particles that compose opal matrix. No stoichiometry deviations and new phases are detected in “opal-NaBi (MoO4)2” composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-45

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Zhu, C. Fang, M. Pu, J. Song, D. Wang, and X. Zhou, Recent Advances in photonic crystal with unique structural colors: A Review, J. Mater. Sci. Technol. 141 (2023) 78-99.

DOI: 10.1016/j.jmst.2022.08.044

Google Scholar

[2] A. Lonergan and C. O'Dwyer, Many facets of photonic crystals: from optics and sensors to energy storage and photocatalysis, Adv. Mater. Technol. (2022) 2201410.

DOI: 10.1002/admt.202201410

Google Scholar

[3] D.A. Kurdyukov, A.B. Pevtsov, A.N. Smirnov, M.A. Yagovkina, V.Y. Grigorev, V.V. Romanov, N.T. Bagraev, and V. G. Golubev, Formation of three-dimensional arrays of magnetic clusters NiO, Co3O4, and NiCo2O4 by the matrix method, Phys. Solid State 58 (2016) 1216-1221.

DOI: 10.1134/s1063783416060275

Google Scholar

[4] A.V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, K. B. Samusev, D. E. Usvyat, and M. F. Limonov, Photonic band-gap structure: from spectroscopy towards visualization, Phys. Rev. B - Condens. Matter Mater. Phys. 70 (2004) 113104.

DOI: 10.1103/physrevb.70.113104

Google Scholar

[5] M.V Rybin, K. B. Samusev, and M. F. Limonov, Experimental study of the photonic band structure of synthetic opals at a low dielectric contrast, Phys. Solid State 49 (2007) 2280-2289.

DOI: 10.1134/s1063783407120116

Google Scholar

[6] V.N. Moiseyenko, M. P. Dergachov, V. G. Shvachich, T. V. Shvets, and O. F. Roshchenko, Spontaneous emission of laser dye molecules in synthetic opals under conditions of low dielectric contrast, Ukr. J. Phys. Opt. 11 (2010) 1-5.

DOI: 10.3116/16091833/11/1/1/2010

Google Scholar

[7] V.S. Gorelik, D. Bi, and G.T. Fei, Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics, J. Adv. Dielectr. 7 (2017) 1750038.

DOI: 10.1142/s2010135x17500382

Google Scholar

[8] N.I. Uskova, E. V. Charnaya, D. Y. Podorozhkin, S. V. Baryshnikov, and A. Y. Milinskiy, Impact of opal nanoconfinement on the ferroelectric transition in deuterated KDP, Results Phys. 26 (2021) 104354.

DOI: 10.1016/j.rinp.2021.104354

Google Scholar

[9] D. Bi and V. S. Gorelik, Optical properties of ferroelectric photonic structures, Ferroelectrics 559 (2020) 36-44.

DOI: 10.1080/00150193.2020.1722004

Google Scholar

[10] V. S. Gorelik, G. I. Dovbeshko, A. V. Evchik, V. N. Moiseenko, and M. P. Dergachev, Growth and optical properties of synthetic opal filled with Bi12SiO20 and Bi12GeO20 nanocrystals, Inorg. Mater. 49 (2013) 802-806.

DOI: 10.1134/s0020168513070066

Google Scholar

[11] B.A. Sal, K. J. Hamam, V.M. Moiseyenko, O.V. Ohiienko, M.P. Derhachov, Increase in Ionic Conductivity in the Nanocrystalline Phase NaBi(MoO4)2:Gd3+, J. Phys. Electron. 29 (2021) 73-78.

DOI: 10.15421/332127

Google Scholar

[12] V.M. Masalov, N.S. Sukhinina, E. A. Kudrenko, G. A. Emelchenko, Mechanism of formation and nanostructure of Stöber silica particles, Nanotechnology 22 (2011) 275718.

DOI: 10.1088/0957-4484/22/27/275718

Google Scholar

[13] A.B. Sal, V. Moiseyenko, M. Dergachov, A. Yevchik, G. Dovbeshko, Manifestation of metastable γ-TeO2 phase in the raman spectrum of crystals grown in synthetic opal pores, Ukr. J. Phys. Opt. 14 (2013) 119-124.

DOI: 10.3116/16091833/14/3/119/2013

Google Scholar

[14] M. Derhachov, V. Moiseienko, N. Kutseva, B. Abu Sal, R. Holze, S. Pliaka, A. Yevchyk, Structure, optical and electric properties of opal-bismuth silicate nanocomposites, Acta Phys. Pol. A 133 (2018) 847-850.

DOI: 10.12693/aphyspola.133.847

Google Scholar

[15] M. Derhachov, V. Moiseienko, N. Kutseva, B. Abu Sal, R. Holze, Fabrication and characterization of crystalline Bi2TeO5 - Bi4Si3O12 - SiO2 nanocomposite, Eur. Phys. J. Plus 134 (2019) 370.

DOI: 10.1140/epjp/i2019-12898-0

Google Scholar

[16] T.M. Oliveira, C. Santos, A.F. Lima, M.V. Lalic, Antisite defect as rule for photorefractive, photochromic and photocatalytic properties of Bi12MO20 (M = Ge, Si, Ti) sillenite crystals, J. Alloys Compd. 720 (2017) 187-195.

DOI: 10.1016/j.jallcom.2017.05.247

Google Scholar

[17] A.T. Efremidis, N.C. Deliolanis, C. Manolikas, E.D. Vanidhis, Dispersion of electro-optic coefficients in sillenite crystals, Appl. Phys. B Lasers Opt. 95 (2009) 467-473.

DOI: 10.1007/s00340-009-3498-8

Google Scholar

[18] O. Krupych, M. Kushnirevych, O. Mys, R. Vlokh, Photoelastic Properties of NaBi(MoO4)2 Crystals, Appl. Opt. 54 (2015) 5016-5023.

DOI: 10.1364/ao.54.005016

Google Scholar

[19] A. Yevchik, V. Moiseyenko, and M. Dergachov, The influence of structural defects on the optical properties of synthetic opals, Ukr. J. Phys. Opt. 16 (2015) 24-31.

DOI: 10.3116/16091833/16/1/24/2015

Google Scholar

[20] G. Dovbeshko, O. Fesenko, V. Boyko, V. Romanyuk, V. Moiseyenko, V. Gorelik, L. Dolgov, V. Kiisk, I. Sildos, Vibrational spectra of opal-based photonic crystals, IOP Conf. Ser.: Mater. Sci. Eng. 38 (2012) 012008.

DOI: 10.1088/1757-899x/38/1/012008

Google Scholar

[21] J. L. Bernstein, The Unit cell and space group of piezoelectic bismuth germanium oxide (Bi12GeO20), J. of' Cryst. Growth 1 (1967) 45-46.

DOI: 10.1016/0022-0248(67)90006-1

Google Scholar

[22] H. Liu and C. Kuo, X-ray powder diffraction pattern of Bi4(SiO4)3, J. Mater. Sci. Technol. 13 (1997) 145-148.

Google Scholar

[23] P. Beneventi, D. Bersani, P. P. Lottici, L. Kovacs, A Raman study of Bi4(GexSi1-x)3O12 crystals, Solid State Commun. 93 (1995) 143-146.

DOI: 10.1016/0038-1098(94)00743-8

Google Scholar

[24] A. Yevchik, V. Moiseyenko, M. Derhachov, S. Plaksin, R. Levchenko, Study of Raman spectra of Pb3(P0.5V0.5O4)2 crystallized in nanoscale opal pores, in 2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS) (2018), p.222–225.

DOI: 10.1109/uwbusis.2018.8520174

Google Scholar