[1]
K. Zhu, C. Fang, M. Pu, J. Song, D. Wang, and X. Zhou, Recent Advances in photonic crystal with unique structural colors: A Review, J. Mater. Sci. Technol. 141 (2023) 78-99.
DOI: 10.1016/j.jmst.2022.08.044
Google Scholar
[2]
A. Lonergan and C. O'Dwyer, Many facets of photonic crystals: from optics and sensors to energy storage and photocatalysis, Adv. Mater. Technol. (2022) 2201410.
DOI: 10.1002/admt.202201410
Google Scholar
[3]
D.A. Kurdyukov, A.B. Pevtsov, A.N. Smirnov, M.A. Yagovkina, V.Y. Grigorev, V.V. Romanov, N.T. Bagraev, and V. G. Golubev, Formation of three-dimensional arrays of magnetic clusters NiO, Co3O4, and NiCo2O4 by the matrix method, Phys. Solid State 58 (2016) 1216-1221.
DOI: 10.1134/s1063783416060275
Google Scholar
[4]
A.V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, K. B. Samusev, D. E. Usvyat, and M. F. Limonov, Photonic band-gap structure: from spectroscopy towards visualization, Phys. Rev. B - Condens. Matter Mater. Phys. 70 (2004) 113104.
DOI: 10.1103/physrevb.70.113104
Google Scholar
[5]
M.V Rybin, K. B. Samusev, and M. F. Limonov, Experimental study of the photonic band structure of synthetic opals at a low dielectric contrast, Phys. Solid State 49 (2007) 2280-2289.
DOI: 10.1134/s1063783407120116
Google Scholar
[6]
V.N. Moiseyenko, M. P. Dergachov, V. G. Shvachich, T. V. Shvets, and O. F. Roshchenko, Spontaneous emission of laser dye molecules in synthetic opals under conditions of low dielectric contrast, Ukr. J. Phys. Opt. 11 (2010) 1-5.
DOI: 10.3116/16091833/11/1/1/2010
Google Scholar
[7]
V.S. Gorelik, D. Bi, and G.T. Fei, Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics, J. Adv. Dielectr. 7 (2017) 1750038.
DOI: 10.1142/s2010135x17500382
Google Scholar
[8]
N.I. Uskova, E. V. Charnaya, D. Y. Podorozhkin, S. V. Baryshnikov, and A. Y. Milinskiy, Impact of opal nanoconfinement on the ferroelectric transition in deuterated KDP, Results Phys. 26 (2021) 104354.
DOI: 10.1016/j.rinp.2021.104354
Google Scholar
[9]
D. Bi and V. S. Gorelik, Optical properties of ferroelectric photonic structures, Ferroelectrics 559 (2020) 36-44.
DOI: 10.1080/00150193.2020.1722004
Google Scholar
[10]
V. S. Gorelik, G. I. Dovbeshko, A. V. Evchik, V. N. Moiseenko, and M. P. Dergachev, Growth and optical properties of synthetic opal filled with Bi12SiO20 and Bi12GeO20 nanocrystals, Inorg. Mater. 49 (2013) 802-806.
DOI: 10.1134/s0020168513070066
Google Scholar
[11]
B.A. Sal, K. J. Hamam, V.M. Moiseyenko, O.V. Ohiienko, M.P. Derhachov, Increase in Ionic Conductivity in the Nanocrystalline Phase NaBi(MoO4)2:Gd3+, J. Phys. Electron. 29 (2021) 73-78.
DOI: 10.15421/332127
Google Scholar
[12]
V.M. Masalov, N.S. Sukhinina, E. A. Kudrenko, G. A. Emelchenko, Mechanism of formation and nanostructure of Stöber silica particles, Nanotechnology 22 (2011) 275718.
DOI: 10.1088/0957-4484/22/27/275718
Google Scholar
[13]
A.B. Sal, V. Moiseyenko, M. Dergachov, A. Yevchik, G. Dovbeshko, Manifestation of metastable γ-TeO2 phase in the raman spectrum of crystals grown in synthetic opal pores, Ukr. J. Phys. Opt. 14 (2013) 119-124.
DOI: 10.3116/16091833/14/3/119/2013
Google Scholar
[14]
M. Derhachov, V. Moiseienko, N. Kutseva, B. Abu Sal, R. Holze, S. Pliaka, A. Yevchyk, Structure, optical and electric properties of opal-bismuth silicate nanocomposites, Acta Phys. Pol. A 133 (2018) 847-850.
DOI: 10.12693/aphyspola.133.847
Google Scholar
[15]
M. Derhachov, V. Moiseienko, N. Kutseva, B. Abu Sal, R. Holze, Fabrication and characterization of crystalline Bi2TeO5 - Bi4Si3O12 - SiO2 nanocomposite, Eur. Phys. J. Plus 134 (2019) 370.
DOI: 10.1140/epjp/i2019-12898-0
Google Scholar
[16]
T.M. Oliveira, C. Santos, A.F. Lima, M.V. Lalic, Antisite defect as rule for photorefractive, photochromic and photocatalytic properties of Bi12MO20 (M = Ge, Si, Ti) sillenite crystals, J. Alloys Compd. 720 (2017) 187-195.
DOI: 10.1016/j.jallcom.2017.05.247
Google Scholar
[17]
A.T. Efremidis, N.C. Deliolanis, C. Manolikas, E.D. Vanidhis, Dispersion of electro-optic coefficients in sillenite crystals, Appl. Phys. B Lasers Opt. 95 (2009) 467-473.
DOI: 10.1007/s00340-009-3498-8
Google Scholar
[18]
O. Krupych, M. Kushnirevych, O. Mys, R. Vlokh, Photoelastic Properties of NaBi(MoO4)2 Crystals, Appl. Opt. 54 (2015) 5016-5023.
DOI: 10.1364/ao.54.005016
Google Scholar
[19]
A. Yevchik, V. Moiseyenko, and M. Dergachov, The influence of structural defects on the optical properties of synthetic opals, Ukr. J. Phys. Opt. 16 (2015) 24-31.
DOI: 10.3116/16091833/16/1/24/2015
Google Scholar
[20]
G. Dovbeshko, O. Fesenko, V. Boyko, V. Romanyuk, V. Moiseyenko, V. Gorelik, L. Dolgov, V. Kiisk, I. Sildos, Vibrational spectra of opal-based photonic crystals, IOP Conf. Ser.: Mater. Sci. Eng. 38 (2012) 012008.
DOI: 10.1088/1757-899x/38/1/012008
Google Scholar
[21]
J. L. Bernstein, The Unit cell and space group of piezoelectic bismuth germanium oxide (Bi12GeO20), J. of' Cryst. Growth 1 (1967) 45-46.
DOI: 10.1016/0022-0248(67)90006-1
Google Scholar
[22]
H. Liu and C. Kuo, X-ray powder diffraction pattern of Bi4(SiO4)3, J. Mater. Sci. Technol. 13 (1997) 145-148.
Google Scholar
[23]
P. Beneventi, D. Bersani, P. P. Lottici, L. Kovacs, A Raman study of Bi4(GexSi1-x)3O12 crystals, Solid State Commun. 93 (1995) 143-146.
DOI: 10.1016/0038-1098(94)00743-8
Google Scholar
[24]
A. Yevchik, V. Moiseyenko, M. Derhachov, S. Plaksin, R. Levchenko, Study of Raman spectra of Pb3(P0.5V0.5O4)2 crystallized in nanoscale opal pores, in 2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS) (2018), p.222–225.
DOI: 10.1109/uwbusis.2018.8520174
Google Scholar