[1]
O.C. Compton, B. Jain, D.A. Dikin, A. Abouimrane, K.Amine, S.T. Nguyen, Chemically active reduced graphene oxide with tunable C/O ratios, ACS Nano 5 (2011) 4380−4391.
DOI: 10.1021/nn1030725
Google Scholar
[2]
M. Kavitha, Saranvignesh Alagarsamy, Shen Ming Chen, R.R. Muthuchudarkodi, J. Shakina, P. Tharmaraj. NiSe integrated with polymerized reduced carbon sheet: As an effective electrocatalyst for methanol oxidation reaction. Int J. Hydrog. Energy. 51 (2024) 1050-1059.
DOI: 10.1016/j.ijhydene.2023.10.331
Google Scholar
[3]
A. Sobhani, F. Davar, M. Salavati-Niasari, Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB, Appl. Surf. Sci. 257 (2011) 7982–7987.
DOI: 10.1016/j.apsusc.2011.04.049
Google Scholar
[4]
A. Sobhani, M. Salavati-Niasari, F. Davar, Shape control of nickel selenides synthesized by a simple hydrothermal reduction process, Polyhedron 31 (2012) 210–216.
DOI: 10.1016/j.poly.2011.09.017
Google Scholar
[5]
M. Esmaeili-Zare, M. Salavati-Niasari, A. Sobhani, Simple sonochemical synthesis and characterization of HgSe nanoparticles, Ultrason. Sonochem. 19 (2012) 1079–1086.
DOI: 10.1016/j.ultsonch.2012.01.013
Google Scholar
[6]
A. Sobhani, M. Salavati-Niasari, Sodium dodecyl benzene sulfonate-assisted synthesis through a hydrothermal reaction, Mater. Res. Bull. 47 (2012) 1905–1911.
DOI: 10.1016/j.materresbull.2012.04.020
Google Scholar
[7]
M. Salavati-Niasari, M. Esmaeili-Zare, A. Sobhani, Synthesis and characterization of cadmium selenide nanostructures by simple sonochemical method, Micro. Nano Lett. 7 (2012) 831–834.
DOI: 10.1049/mnl.2012.0443
Google Scholar
[8]
M. Salavati-Niasari, A. Sobhani, Effect of nickel salt precursors on morphology, size, optical property and type of products (NiSe or Se) in hydrothermal method, Opt. Mater. 35 (2013) 904– 909.
DOI: 10.1016/j.optmat.2012.11.004
Google Scholar
[9]
M. Salavati-Niasari, M. Esmaeili-Zare, A. Sobhani, Cubic HgSe nanoparticles: sonochemical synthesis and characterization, Micro. Nano Lett. 7 (2012) 1300–1304.
DOI: 10.1049/mnl.2012.0709
Google Scholar
[10]
A. Sobhani, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, Single-source molecular precursor for synthesis of copper sulfide nanostructures, J. Clust. Sci. 23 (2012) 1143–1151.
DOI: 10.1007/s10876-012-0509-4
Google Scholar
[11]
L. Wang, L. Chen, T. Luo, K. Bao, Y. Qian, A facile method to the cube-like MnSe2 microcrystallines via a hydrothermal process, Solid State Commun. 138 (2006) 72–75.
DOI: 10.1016/j.ssc.2006.02.006
Google Scholar
[12]
A. Sobhani, M. Salavati-Niasari, Morphological control of MnSe2/Se nanocomposites by amount of hydrazine through a hydrothermal process, Mater. Res. Bull. 48 (2013) 3204–3210.
DOI: 10.1016/j.materresbull.2013.04.086
Google Scholar
[13]
H. Van der Heide, J. Sanchez, C. Van Bruggen, Magnetic and structural phase transitions of α-MnSe and Mn1-xMgxSe (0< x⩽0.15), J. Magn. Magn. Mater., 15 (1980) 1157-1158.
DOI: 10.1016/0304-8853(80)90232-2
Google Scholar
[14]
Zohaib Saddique, Muhammad Imran, Ayesha Javaid, Shoomaila Latif, Tak H. Kim, Marcin Janczarek, Muhammad Bilal, Teofil Jesionowski, Bio-fabricated bismuth-based materials for removal of emerging environmental contaminants from wastewater, Environ. Res. 229 (2023) 115861.
DOI: 10.1016/j.envres.2023.115861
Google Scholar
[15]
M.S. Javed, S.S.A. Shah, S. Hussain, S. Tan, W. Mai, Mesoporous manganese-selenide microflowers with enhanced electrochemical performance as a flexible symmetric 1.8 V supercapacitor, Chem. Eng. J., 382 (2020) 122814.
DOI: 10.1016/j.cej.2019.122814
Google Scholar
[16]
S. Sahoo, P. Pazhamalai, K. Krishnamoorthy, S.-J. Kim, Hydrothermally prepared α-MnSenanoparticles as a new pseudocapacitive electrode material for supercapacitor, Electrochim. Acta, 268 (2018) 403-410.
DOI: 10.1016/j.electacta.2018.02.116
Google Scholar
[17]
J. Qian, S.P. Lau, MnSe2 nanocubes as an anode material for sodium-ion batteries, Mater. Today Ener., 10 (2018) 62-67.
DOI: 10.1016/j.mtener.2018.08.009
Google Scholar
[18]
J. Feng, Q. Li, H. Wang, M. Zhang, X. Yang, R. Yuan, Y. Chai, Hexagonal prism structured MnSe stabilized by nitrogen-doped carbon for high performance lithium ion batteries, J. Alloy Comp., 789 (2019) 451-459.
DOI: 10.1016/j.jallcom.2019.03.081
Google Scholar
[19]
L. Zheng, J. Li, B. Zhou, H. Liu, Z. Bu, B. Chen, R. Ang, W. Li, Thermoelectric properties of p-type MnSe, J. Alloy Comp., 789 (2019) 953-959.
DOI: 10.1016/j.jallcom.2019.03.140
Google Scholar
[20]
M.R. Mahmoudian, Y. Alias, W.J. Basirum, M. Ebadi, Poly (N-methyl pyrrole) and its copolymer with o-toluidine electrodeposited on steel in mixture of DBSA and oxalic acid electrolytes, Curr. Appl. Phys. 11 (2011) 368-375.
DOI: 10.1016/j.cap.2010.08.006
Google Scholar
[21]
M.I. Redondo, E.S. De La Blanca, M.V. Garcı́a, M.A. Raso, J. Tortajada, M.J. Gonzalez-Tejera, FTIR study of chemically synthesized poly (N-methylpyrrole), Synth. met. 122 (2001) 431-435.
DOI: 10.1016/s0379-6779(00)00563-4
Google Scholar
[22]
G. Huerta, L. Fomina, L. Rumsh, M.G. Zolotukhin, New polymers with N-phenyl pyrrole fragments obtained by chemical modifications of diacetylene containing polymers, Polym. Bull. 57 (2006) 433–443.
DOI: 10.1007/s00289-006-0576-5
Google Scholar
[23]
M. A. A. Mohd Abdah, N. S. Mohd Razali, P. T. Lim, S. Kulandaivalu and Y. Sulaiman, One-step potentiostatic electrodeposition of polypyrrole/graphene oxide/multi-walled carbon nanotubes ternary nanocomposite for supercapacitor, Mater. Chem. Phys., 219 (2018) 120–128.
DOI: 10.1016/j.matchemphys.2018.08.018
Google Scholar
[24]
S. Kulandaivalu and Y. Sulaiman, Designing an advanced electrode of mixed carbon materials layered on polypyrrole/reduced graphene oxide for high specific energy supercapacitor, J. Power Sources 419 (2019) 181–191.
DOI: 10.1016/j.jpowsour.2019.02.079
Google Scholar
[25]
W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, et al., Carbon nanotubes assupport for cathode catalyst of a direct methanol fuel cell, Carbon 40 (2002) 787e790.
DOI: 10.1016/s0008-6223(02)00039-8
Google Scholar
[26]
L. Zhang, D. Zhang, Z. Ren, Formation of Double-Shelled Zinc–Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors, Chem Electro Chem. 4 (2017) 441-449.
DOI: 10.1002/anie.201702649
Google Scholar
[27]
J.B. Wu, Z.G. Li, X.H. Huang, Y. Lin, Porous Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electro-oxidation, J. Power Sources. 224 (2013) 1–5.
DOI: 10.1016/j.jpowsour.2012.09.085
Google Scholar
[28]
Z. Li, M. Li, M. Han, J. Zeng, Y. Li, Y. Guo, S. Liao, Preparation and characterization of carbon-supported PtOs electrocatalysts via polyol reduction method for methanol oxidation reaction, J. Power Sources. 268 (2014) 824–830.
DOI: 10.1016/j.jpowsour.2014.06.122
Google Scholar
[29]
W. Zhang, Z. Pan, F.K. Yang, B. Zhao, A facile in situ approach to polypyrrole functionalization through bioinspired catechols, Adv. Funct. Mater. 25 (2015) 1588–1597.
DOI: 10.1002/adfm.201403115
Google Scholar
[30]
U. Abaci, H.Y. Guney, U. Kadiroglu, Morphological and electrochemical properties of PPy, PAni bilayer films and enhanced stability of their electrochromic devices (PPy/PAni-PEDOT, PAni/PPy-PEDOT), Electrochim. Acta. 96 (2013) 214–224.
DOI: 10.1016/j.electacta.2013.02.120
Google Scholar
[31]
B.Vellaichamy, P.Periakaruppan, Silver nanoparticle-embedded RGO-nanosponge for superior catalytic activity towards 4-nitrophenol reduction, RSC advances. 6 (2016) 88837-45.
DOI: 10.1039/c6ra19834a
Google Scholar
[32]
X.Wu , J.Zhou, W.Xing, G.Wang, H.Cui, S.Zhuo, Q.Xue, Z. Yana, Shi Zhang Qiao, High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio, J. Mater. Chem. 22 (2012) 23186-93.
DOI: 10.1039/c2jm35278h
Google Scholar
[33]
B.Vellaichamy , P.Prakash, J.Thomas, Synthesis of AuNPs@ RGO nanosheets for sustainable catalysis toward nitrophenols reduction, Ultrason. Sonochem.48 (2018) 362-369.
DOI: 10.1016/j.ultsonch.2018.05.012
Google Scholar
[34]
Yayuk Astuti, Fikrian Kasalji, Didik Setiyo Widodo, Hendri Widiyandari, Glycine-fueled solution combustion synthesis: photocatalytic activity of bismuth oxide on the degradation of organic dye molecules in relation to differences in fuel-oxidant ratio, Desalin. Water Treat. 236 (2021) 338-347.
DOI: 10.5004/dwt.2021.27695
Google Scholar
[35]
Zi-Hao Zhang, Hui-Ling Zheng, Chen-Gang Feng, Wen-Bin Yang, Hong-Lin Zhu, Yue-Qing Zheng, An evidence for electron transfer of hydrolytic dehydrogenation of ammonia borane over ruthenium ultra-fine nanoparticles, Int J. Hydrog. Energy. 51 (2024) 1119-1127.
DOI: 10.1016/j.ijhydene.2023.11.004
Google Scholar
[36]
ChaoheXu, J.Sun, I.Gao, Synthesis of novel hierarchical grapheme/polypyrrole nanosheet composites and their superior electrochemical performance,J.Mater.Chem.21 (2011)11253-11258.
DOI: 10.1039/c1jm11275a
Google Scholar
[37]
S. Gholizadeh Khasevani, S. Shahsavari, M.R. Gholami, Green synthesis of ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite via MOF templating as a reusable heterogeneous nanocatalyst and nano-photocatalyst, Mater. Res. Bull. 138 (2021) 111204.
DOI: 10.1016/j.materresbull.2021.111204
Google Scholar
[38]
Mariya Midhu Francis, Anindita Thakur, Aniket Balapure, Jayati Ray Dutta, Ramakrishnan Ganesan, Fabricating effective heterojunction in metal-organic framework-derived self-cleanable and dark/visible-light dual mode antimicrobial CuO/AgX (X = Cl, Br, or I) nanocomposites, Chem. Eng. J. 446 (2022) 137363.
DOI: 10.1016/j.cej.2022.137363
Google Scholar
[39]
Bing Zhang, Saofeng Lin, Jingjing Zhang, Xiaopeng Li and Xiaodong Sun, Facile synthesis of sandwich-like rGO/CuS/Polypyrrole nanoarcitecture for efficient Electromagnetic absorption, Materials. 13 (2020) 446-449.
DOI: 10.3390/ma13020446
Google Scholar
[40]
Zhe Chen, Yuting Gao, Feng Chen, Hongfei Shi, Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity. Chem. Eng.J. 413 (2021) 127474.
DOI: 10.1016/j.cej.2020.127474
Google Scholar
[41]
Xiang Li , Jiahao Zhang, Junhui Liu , Songtao Wang, Yakun Song, Jun Zhang, Design strategies for shape-controlled nanocatalysts for efficient dehydrogenation of ammonia borane, J. Alloys Compd.961 (2023) 171001.
DOI: 10.1016/j.jallcom.2023.171001
Google Scholar
[42]
M.Gracita, Tomboc, Hern Kim, Utilization of the superior properties of highly mesoporous PVP modified NiCo2O4 with accessible 3D nanostructure and flower-like morphology towards electrochemical methanol oxidation reaction, J. Energy Chem. (2019) 136-146.
DOI: 10.1016/j.jechem.2018.08.009
Google Scholar
[43]
A. Daryoush Afzali , B.Fariba Fathirad, B. Zahra Afzali, Mehdi Esmaeili Bidhendi, Design of PdxIr/g-C3N4 modified FTO to facilitate electricity generation and hydrogen evolution in alkaline media, Int. J. Hydrog. Energy.45 (2020) 22965-22972.
DOI: 10.1016/j.ijhydene.2020.06.082
Google Scholar
[44]
L.Xu , Y.Li, P.Zhang, S.Chen, L.Wang, Preparation andcharacterization of bimetallic NieIr/C catalysts for HIdecomposition in the thermochemical water-splittingiodineesulfur process for hydrogen production, Int. J. Hydrog. Energy. 44 (2019) 24360e8.
Google Scholar
[45]
Saim Özkar, Increasing the catalytic efficiency of rhodium(0) nanoparticles in hydrolytic dehydrogenation of ammonia borane, , Int. J. Hydrog. Energy. 54 (2024) 327-343.
DOI: 10.1016/j.ijhydene.2023.03.322
Google Scholar
[46]
SL.Madaswamy, NV. Keertheeswari, AA. Alothman, M. Mana AL-Anazy, KN. Alqahtani , SM. Wabaidur, R. Dhanusuraman. Fabrication of nanocomposite networks using Pd nanoparticles/polydiphenylamine anchored on the surface of reduced graphene oxide: an efficient anode electrocatalyst for oxidation of methanol. Adv. Ind.Eng. Polym. Res. 5 (2022) 18–25.
DOI: 10.1016/j.aiepr.2021.08.001
Google Scholar