Synthesis, Characterization and Electrical Properties of Reduced Graphene Oxide (RGO)/Poly-N-Methyl Pyrolle (P-NMPy)@Manganese Selenide (MnSe) Polymer Nanocomposite for Methanol Oxidation Reaction

Article Preview

Abstract:

A novel hybrid ternary polymer nanocomposite, Reduced Graphene Oxide/Poly-N-Methyl Pyrrole@Manganese Selenide (RGO/P-NMPy@MnSe), was synthesized through a chemical oxidative in situ polymerization route and evaluated as an efficient electrocatalyst for the methanol oxidation reaction (MOR) in alkaline media. Structural and morphological characterizations using FTIR, UV–Vis spectroscopy, XRD, FESEM-EDAX, and TEM confirmed the homogeneous incorporation of MnSe nanoparticles within the conductive RGO/P-NMPy framework. Electrochemical analysis via cyclic voltammetry revealed a high electrochemically active surface area (ECSA) of 68.7 m² g⁻¹ and a superior peak current density of 36.25 µA at pH 9.0. Chronoamperometric studies demonstrated remarkable durability with a sustained steady-state current density (798.31–93.89 µA) for over 900 s, confirming excellent catalytic stability. The synergistic effects of RGO conductivity, MnSe catalytic activity, and the polymer’s structural integrity enhance electron transfer and tolerance toward poisoning intermediates. These findings highlight RGO/P-NMPy@MnSe as a low-cost, durable, and efficient electrocatalyst for direct methanol fuel cells (DMFCs) and related electrochemical energy conversion applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-19

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.C. Compton, B. Jain, D.A. Dikin, A. Abouimrane, K.Amine, S.T. Nguyen, Chemically active reduced graphene oxide with tunable C/O ratios, ACS Nano 5 (2011) 4380−4391.

DOI: 10.1021/nn1030725

Google Scholar

[2] M. Kavitha, Saranvignesh Alagarsamy, Shen Ming Chen, R.R. Muthuchudarkodi, J. Shakina, P. Tharmaraj. NiSe integrated with polymerized reduced carbon sheet: As an effective electrocatalyst for methanol oxidation reaction. Int J. Hydrog. Energy. 51 (2024) 1050-1059.

DOI: 10.1016/j.ijhydene.2023.10.331

Google Scholar

[3] A. Sobhani, F. Davar, M. Salavati-Niasari, Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB, Appl. Surf. Sci. 257 (2011) 7982–7987.

DOI: 10.1016/j.apsusc.2011.04.049

Google Scholar

[4] A. Sobhani, M. Salavati-Niasari, F. Davar, Shape control of nickel selenides synthesized by a simple hydrothermal reduction process, Polyhedron 31 (2012) 210–216.

DOI: 10.1016/j.poly.2011.09.017

Google Scholar

[5] M. Esmaeili-Zare, M. Salavati-Niasari, A. Sobhani, Simple sonochemical synthesis and characterization of HgSe nanoparticles, Ultrason. Sonochem. 19 (2012) 1079–1086.

DOI: 10.1016/j.ultsonch.2012.01.013

Google Scholar

[6] A. Sobhani, M. Salavati-Niasari, Sodium dodecyl benzene sulfonate-assisted synthesis through a hydrothermal reaction, Mater. Res. Bull. 47 (2012) 1905–1911.

DOI: 10.1016/j.materresbull.2012.04.020

Google Scholar

[7] M. Salavati-Niasari, M. Esmaeili-Zare, A. Sobhani, Synthesis and characterization of cadmium selenide nanostructures by simple sonochemical method, Micro. Nano Lett. 7 (2012) 831–834.

DOI: 10.1049/mnl.2012.0443

Google Scholar

[8] M. Salavati-Niasari, A. Sobhani, Effect of nickel salt precursors on morphology, size, optical property and type of products (NiSe or Se) in hydrothermal method, Opt. Mater. 35 (2013) 904– 909.

DOI: 10.1016/j.optmat.2012.11.004

Google Scholar

[9] M. Salavati-Niasari, M. Esmaeili-Zare, A. Sobhani, Cubic HgSe nanoparticles: sonochemical synthesis and characterization, Micro. Nano Lett. 7 (2012) 1300–1304.

DOI: 10.1049/mnl.2012.0709

Google Scholar

[10] A. Sobhani, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, Single-source molecular precursor for synthesis of copper sulfide nanostructures, J. Clust. Sci. 23 (2012) 1143–1151.

DOI: 10.1007/s10876-012-0509-4

Google Scholar

[11] L. Wang, L. Chen, T. Luo, K. Bao, Y. Qian, A facile method to the cube-like MnSe2 microcrystallines via a hydrothermal process, Solid State Commun. 138 (2006) 72–75.

DOI: 10.1016/j.ssc.2006.02.006

Google Scholar

[12] A. Sobhani, M. Salavati-Niasari, Morphological control of MnSe2/Se nanocomposites by amount of hydrazine through a hydrothermal process, Mater. Res. Bull. 48 (2013) 3204–3210.

DOI: 10.1016/j.materresbull.2013.04.086

Google Scholar

[13] H. Van der Heide, J. Sanchez, C. Van Bruggen, Magnetic and structural phase transitions of α-MnSe and Mn1-xMgxSe (0< x⩽0.15), J. Magn. Magn. Mater., 15 (1980) 1157-1158.

DOI: 10.1016/0304-8853(80)90232-2

Google Scholar

[14] Zohaib Saddique, Muhammad Imran, Ayesha Javaid, Shoomaila Latif, Tak H. Kim, Marcin Janczarek, Muhammad Bilal, Teofil Jesionowski, Bio-fabricated bismuth-based materials for removal of emerging environmental contaminants from wastewater, Environ. Res. 229 (2023) 115861.

DOI: 10.1016/j.envres.2023.115861

Google Scholar

[15] M.S. Javed, S.S.A. Shah, S. Hussain, S. Tan, W. Mai, Mesoporous manganese-selenide microflowers with enhanced electrochemical performance as a flexible symmetric 1.8 V supercapacitor, Chem. Eng. J., 382 (2020) 122814.

DOI: 10.1016/j.cej.2019.122814

Google Scholar

[16] S. Sahoo, P. Pazhamalai, K. Krishnamoorthy, S.-J. Kim, Hydrothermally prepared α-MnSenanoparticles as a new pseudocapacitive electrode material for supercapacitor, Electrochim. Acta, 268 (2018) 403-410.

DOI: 10.1016/j.electacta.2018.02.116

Google Scholar

[17] J. Qian, S.P. Lau, MnSe2 nanocubes as an anode material for sodium-ion batteries, Mater. Today Ener., 10 (2018) 62-67.

DOI: 10.1016/j.mtener.2018.08.009

Google Scholar

[18] J. Feng, Q. Li, H. Wang, M. Zhang, X. Yang, R. Yuan, Y. Chai, Hexagonal prism structured MnSe stabilized by nitrogen-doped carbon for high performance lithium ion batteries, J. Alloy Comp., 789 (2019) 451-459.

DOI: 10.1016/j.jallcom.2019.03.081

Google Scholar

[19] L. Zheng, J. Li, B. Zhou, H. Liu, Z. Bu, B. Chen, R. Ang, W. Li, Thermoelectric properties of p-type MnSe, J. Alloy Comp., 789 (2019) 953-959.

DOI: 10.1016/j.jallcom.2019.03.140

Google Scholar

[20] M.R. Mahmoudian, Y. Alias, W.J. Basirum, M. Ebadi, Poly (N-methyl pyrrole) and its copolymer with o-toluidine electrodeposited on steel in mixture of DBSA and oxalic acid electrolytes, Curr. Appl. Phys. 11 (2011) 368-375.

DOI: 10.1016/j.cap.2010.08.006

Google Scholar

[21] M.I. Redondo, E.S. De La Blanca, M.V. Garcı́a, M.A. Raso, J. Tortajada, M.J. Gonzalez-Tejera, FTIR study of chemically synthesized poly (N-methylpyrrole), Synth. met. 122 (2001) 431-435.

DOI: 10.1016/s0379-6779(00)00563-4

Google Scholar

[22] G. Huerta, L. Fomina, L. Rumsh, M.G. Zolotukhin, New polymers with N-phenyl pyrrole fragments obtained by chemical modifications of diacetylene containing polymers, Polym. Bull. 57 (2006) 433–443.

DOI: 10.1007/s00289-006-0576-5

Google Scholar

[23] M. A. A. Mohd Abdah, N. S. Mohd Razali, P. T. Lim, S. Kulandaivalu and Y. Sulaiman, One-step potentiostatic electrodeposition of polypyrrole/graphene oxide/multi-walled carbon nanotubes ternary nanocomposite for supercapacitor, Mater. Chem. Phys., 219 (2018) 120–128.

DOI: 10.1016/j.matchemphys.2018.08.018

Google Scholar

[24] S. Kulandaivalu and Y. Sulaiman, Designing an advanced electrode of mixed carbon materials layered on polypyrrole/reduced graphene oxide for high specific energy supercapacitor, J. Power Sources 419 (2019) 181–191.

DOI: 10.1016/j.jpowsour.2019.02.079

Google Scholar

[25] W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, et al., Carbon nanotubes assupport for cathode catalyst of a direct methanol fuel cell, Carbon 40 (2002) 787e790.

DOI: 10.1016/s0008-6223(02)00039-8

Google Scholar

[26] L. Zhang, D. Zhang, Z. Ren, Formation of Double-Shelled Zinc–Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors, Chem Electro Chem. 4 (2017) 441-449.

DOI: 10.1002/anie.201702649

Google Scholar

[27] J.B. Wu, Z.G. Li, X.H. Huang, Y. Lin, Porous Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electro-oxidation, J. Power Sources. 224 (2013) 1–5.

DOI: 10.1016/j.jpowsour.2012.09.085

Google Scholar

[28] Z. Li, M. Li, M. Han, J. Zeng, Y. Li, Y. Guo, S. Liao, Preparation and characterization of carbon-supported PtOs electrocatalysts via polyol reduction method for methanol oxidation reaction, J. Power Sources. 268 (2014) 824–830.

DOI: 10.1016/j.jpowsour.2014.06.122

Google Scholar

[29] W. Zhang, Z. Pan, F.K. Yang, B. Zhao, A facile in situ approach to polypyrrole functionalization through bioinspired catechols, Adv. Funct. Mater. 25 (2015) 1588–1597.

DOI: 10.1002/adfm.201403115

Google Scholar

[30] U. Abaci, H.Y. Guney, U. Kadiroglu, Morphological and electrochemical properties of PPy, PAni bilayer films and enhanced stability of their electrochromic devices (PPy/PAni-PEDOT, PAni/PPy-PEDOT), Electrochim. Acta. 96 (2013) 214–224.

DOI: 10.1016/j.electacta.2013.02.120

Google Scholar

[31] B.Vellaichamy, P.Periakaruppan, Silver nanoparticle-embedded RGO-nanosponge for superior catalytic activity towards 4-nitrophenol reduction, RSC advances. 6 (2016) 88837-45.

DOI: 10.1039/c6ra19834a

Google Scholar

[32] X.Wu , J.Zhou, W.Xing, G.Wang, H.Cui, S.Zhuo, Q.Xue, Z. Yana, Shi Zhang Qiao, High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio, J. Mater. Chem. 22 (2012) 23186-93.

DOI: 10.1039/c2jm35278h

Google Scholar

[33] B.Vellaichamy , P.Prakash, J.Thomas, Synthesis of AuNPs@ RGO nanosheets for sustainable catalysis toward nitrophenols reduction, Ultrason. Sonochem.48 (2018) 362-369.

DOI: 10.1016/j.ultsonch.2018.05.012

Google Scholar

[34] Yayuk Astuti, Fikrian Kasalji, Didik Setiyo Widodo, Hendri Widiyandari, Glycine-fueled solution combustion synthesis: photocatalytic activity of bismuth oxide on the degradation of organic dye molecules in relation to differences in fuel-oxidant ratio, Desalin. Water Treat. 236 (2021) 338-347.

DOI: 10.5004/dwt.2021.27695

Google Scholar

[35] Zi-Hao Zhang, Hui-Ling Zheng, Chen-Gang Feng, Wen-Bin Yang, Hong-Lin Zhu, Yue-Qing Zheng, An evidence for electron transfer of hydrolytic dehydrogenation of ammonia borane over ruthenium ultra-fine nanoparticles, Int J. Hydrog. Energy. 51 (2024) 1119-1127.

DOI: 10.1016/j.ijhydene.2023.11.004

Google Scholar

[36] ChaoheXu, J.Sun, I.Gao, Synthesis of novel hierarchical grapheme/polypyrrole nanosheet composites and their superior electrochemical performance,J.Mater.Chem.21 (2011)11253-11258.

DOI: 10.1039/c1jm11275a

Google Scholar

[37] S. Gholizadeh Khasevani, S. Shahsavari, M.R. Gholami, Green synthesis of ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite via MOF templating as a reusable heterogeneous nanocatalyst and nano-photocatalyst, Mater. Res. Bull. 138 (2021) 111204.

DOI: 10.1016/j.materresbull.2021.111204

Google Scholar

[38] Mariya Midhu Francis, Anindita Thakur, Aniket Balapure, Jayati Ray Dutta, Ramakrishnan Ganesan, Fabricating effective heterojunction in metal-organic framework-derived self-cleanable and dark/visible-light dual mode antimicrobial CuO/AgX (X = Cl, Br, or I) nanocomposites, Chem. Eng. J. 446 (2022) 137363.

DOI: 10.1016/j.cej.2022.137363

Google Scholar

[39] Bing Zhang, Saofeng Lin, Jingjing Zhang, Xiaopeng Li and Xiaodong Sun, Facile synthesis of sandwich-like rGO/CuS/Polypyrrole nanoarcitecture for efficient Electromagnetic absorption, Materials. 13 (2020) 446-449.

DOI: 10.3390/ma13020446

Google Scholar

[40] Zhe Chen, Yuting Gao, Feng Chen, Hongfei Shi, Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity. Chem. Eng.J. 413 (2021) 127474.

DOI: 10.1016/j.cej.2020.127474

Google Scholar

[41] Xiang Li , Jiahao Zhang, Junhui Liu , Songtao Wang, Yakun Song, Jun Zhang, Design strategies for shape-controlled nanocatalysts for efficient dehydrogenation of ammonia borane, J. Alloys Compd.961 (2023) 171001.

DOI: 10.1016/j.jallcom.2023.171001

Google Scholar

[42] M.Gracita, Tomboc, Hern Kim, Utilization of the superior properties of highly mesoporous PVP modified NiCo2O4 with accessible 3D nanostructure and flower-like morphology towards electrochemical methanol oxidation reaction, J. Energy Chem. (2019) 136-146.

DOI: 10.1016/j.jechem.2018.08.009

Google Scholar

[43] A. Daryoush Afzali , B.Fariba Fathirad, B. Zahra Afzali, Mehdi Esmaeili Bidhendi, Design of PdxIr/g-C3N4 modified FTO to facilitate electricity generation and hydrogen evolution in alkaline media, Int. J. Hydrog. Energy.45 (2020) 22965-22972.

DOI: 10.1016/j.ijhydene.2020.06.082

Google Scholar

[44] L.Xu , Y.Li, P.Zhang, S.Chen, L.Wang, Preparation andcharacterization of bimetallic NieIr/C catalysts for HIdecomposition in the thermochemical water-splittingiodineesulfur process for hydrogen production, Int. J. Hydrog. Energy. 44 (2019) 24360e8.

Google Scholar

[45] Saim Özkar, Increasing the catalytic efficiency of rhodium(0) nanoparticles in hydrolytic dehydrogenation of ammonia borane, , Int. J. Hydrog. Energy. 54 (2024) 327-343.

DOI: 10.1016/j.ijhydene.2023.03.322

Google Scholar

[46] SL.Madaswamy, NV. Keertheeswari, AA. Alothman, M. Mana AL-Anazy, KN. Alqahtani , SM. Wabaidur, R. Dhanusuraman. Fabrication of nanocomposite networks using Pd nanoparticles/polydiphenylamine anchored on the surface of reduced graphene oxide: an efficient anode electrocatalyst for oxidation of methanol. Adv. Ind.Eng. Polym. Res. 5 (2022) 18–25.

DOI: 10.1016/j.aiepr.2021.08.001

Google Scholar