The Impact of Gold and Silver Nanoparticles on Blood Flow Behavior in Constricted Artery

Article Preview

Abstract:

The study examines the effects of silver and gold nanoparticles on blood flow in stenosed arteries. The evaluation part of a mathematical model that consisted of linked partial differential equations. These equations have been resolved using the FTCS scheme, along with suitable boundary conditions. The velocity and concentration, temperature, wall shear stress, and volumetric flow rate are all demonstrated with the help of numerical solutions. These are necessary for understanding the impact of different parameters. The present study contributes to the biomedical field by examining the impact of gold and silver nanoparticles on blood flow, which is measured by concentration, wall shear stress, volumetric flow rate, velocity, and temperature, for various values of dimensionless parameters. This understanding is important for the treatment of cardiovascular diseases.Keywords: Stenosis Artery; Gold Nanoparticle; Silver Nanoparticle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-118

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Hussain, L. Sarwar, A. Rehman, S. Akbar, F. Gamaoun, H.H. Coban, M.S. Alqurashi, Heat transfer analysis and effects of (silver and gold) nanoparticles on blood flow inside arterial stenosis, Appl. Sci. 12 (2022) 1601.

DOI: 10.3390/app12031601

Google Scholar

[2] A. Kumar, X. Zhang, X.J. Liang, Gold nanoparticles: Emerging paradigm for targeted drug delivery system, Biotech. Adv. 31 (2013) 593-606.

DOI: 10.1016/j.biotechadv.2012.10.002

Google Scholar

[3] A. Zaman, N. Ali, M. Sajid, Numerical simulation of pulsatile flow of blood in a porous-saturated overlapping stenosed artery, Math. Comput. Simul. 134 (2017) 1-16.

DOI: 10.1016/j.matcom.2016.09.008

Google Scholar

[4] A.S. Udriște, A.C. Burdușel, A.G. Niculescu, M. Rădulescu, A.M. Grumezescu, Metal-based nanoparticles for cardiovascular diseases, Int. J. Mol. Sci. 25 (2024) 1001.

DOI: 10.3390/ijms25021001

Google Scholar

[5] B. Tripathi, B.K. Sharma, Two-phase analysis of blood flow through a stenosed artery with the effects of chemical reaction and radiation, Ric. Mat. 73 (2024) 151-177.

DOI: 10.1007/s11587-021-00571-7

Google Scholar

[6] B.K. Sharma, U. Khanduri, R. Gandhi, T. Muhammad, Entropy generation analysis of a ternary hybrid nanofluid (Au-CuO-GO/blood) containing gyrotactic microorganisms in bifurcated artery, Int. J. Numer. Methods. Heat. Fluid. Flow. 34 (2024) 980-1020.

DOI: 10.1108/hff-07-2023-0439

Google Scholar

[7] D.A. Sipkins, D.A. Cheresh, M.R. Kazemi, L.M. Nevin, M.D. Bednarski, K.C. Li, Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging, Nat. Med. 4 (1998) 623-626.

DOI: 10.1038/nm0598-623

Google Scholar

[8] D.B. Chithrani, M. Dunne, J. Stewart, C. Allen, D.A. Jaffray, Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier, Nanomedicine. 6 (2010) 161-169.

DOI: 10.1016/j.nano.2009.04.009

Google Scholar

[9] E.A. Algehyne, N.A. Ahammad, M.E. Elnair, M. Zidan, Y.Y. Alhusayni, B.O. El-Bashir, F. Alzahrani, Entropy optimization and response surface methodology of blood hybrid nanofluid flow through composite stenosis artery with magnetized nanoparticles (Au-Ta) for drug delivery application, Sci. Rep. 13 (2023) 9856.

DOI: 10.1038/s41598-023-36931-6

Google Scholar

[10] G.D. Smith, Numerical solution of partial differential equations: finite difference methods, Oxford University Press, 1985.

Google Scholar

[11] G.K. Devi, P. Suruthi, R. Veerakumar, S. Vinoth, R. Subbaiya, S. Chozhavendhan, A review on metallic gold and silver nanoparticles, Res. J. Pharm. Tech. 12 (2019) 935-943.

DOI: 10.5958/0974-360x.2019.00158.6

Google Scholar

[12] H. Waqas, U. Farooq, D. Liu, M. Alghamdi, S. Noreen, T. Muhammad, Numerical investigation of nanofluid flow with gold and silver nanoparticles injected inside a stenotic artery, Mater. Des. 223 (2022) 111130.

DOI: 10.1016/j.matdes.2022.111130

Google Scholar

[13] H.T. Basha, K. Rajagopal, N.A. Ahammad, S. Sathish, S.R. Gunakala, Finite difference computation of Au‐Cu/magneto‐bio‐hybrid nanofluid flow in an inclined uneven stenosis artery, Complexity. 2022 (2022) 2078372.

DOI: 10.1155/2022/2078372

Google Scholar

[14] J. Tripathi, B. Vasu, O.A. Bég, R.S.R. Gorla, Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery: Biomedical drug delivery simulation, Proc. Inst. Mech. Eng. H: J. Eng. Med. 235 (2021) 1175-1196.

DOI: 10.1177/09544119211026095

Google Scholar

[15] J.Z. Guo, H. Cui, W. Zhou, W. Wang, Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide, J. Photochem. Photobiol. A: Chem. 193 (2008) 89-96.

DOI: 10.1016/j.jphotochem.2007.04.034

Google Scholar

[16] K.A. Hoffmann, S.T. Chiang, Computational fluid dynamics, Volume I., Engineering Education System, 2000.

Google Scholar

[17] Poonam, B.K. Sharma, Mathematical analysis of hybrid nanoparticles (Au−Al2O3) on MHD blood flow through a curved artery with stenosis and aneurysm using hematocrit-dependent viscosity, in: S. Banerjee, A. Saha (Eds.), Nonlinear Dynamics and Applications, Springer Proceedings in Complexity. Springer, Cham. 2022.

DOI: 10.1007/978-3-030-99792-2_34

Google Scholar

[18] R. Gandhi, B.K. Sharma, C. Kumawat, O.A. Beg, Modeling and analysis of magnetic hybrid nanoparticle (Au-Al2O3/blood) based drug delivery through a bell-shaped occluded artery with joule heating, viscous dissipation and variable viscosity effects, Proc. Inst. Mech. Eng. E J. Proc. Mech. Eng. 236 (2022) 2024-2043.

DOI: 10.1177/09544089221080273

Google Scholar

[19] S. Kumar, S. Kumar, Blood flow through an elliptical stenosed artery with the heat source and chemical reaction, Res. J. Biotech. 17 (2022) 82-90.

DOI: 10.25303/1712rjbt82090

Google Scholar

[20] S. Kumar, S. Kumar, Blood flow with heat transfer through different geometries of stenotic arteries, Trends Sci. 20 (2023) 6965-6965.

DOI: 10.48048/tis.2023.6965

Google Scholar

[21] S.A. Devi, S.S.U. Devi, Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int. J. Nonlin. Sci. Numer. Simul. 17 (2016) 249-257.

DOI: 10.1515/ijnsns-2016-0037

Google Scholar

[22] T. Elnaqeeb, N.A. Shah, K.S. Mekheimer, Hemodynamic characteristics of gold nanoparticle blood flow through a tapered stenosed vessel with variable nanofluid viscosity, Bionanosci. 9 (2019) 245-255.

DOI: 10.1007/s12668-018-0593-5

Google Scholar

[23] Y.A. Krutyakov, A.A. Kudrinskiy, A.Y. Olenin, G.V. Lisichkin, Synthesis and properties of silver nanoparticles: Advances and prospects, Russ. Chem. Rev. 77 (2008) 233.

DOI: 10.1070/rc2008v077n03abeh003751

Google Scholar