[1]
A. Hussain, L. Sarwar, A. Rehman, S. Akbar, F. Gamaoun, H.H. Coban, M.S. Alqurashi, Heat transfer analysis and effects of (silver and gold) nanoparticles on blood flow inside arterial stenosis, Appl. Sci. 12 (2022) 1601.
DOI: 10.3390/app12031601
Google Scholar
[2]
A. Kumar, X. Zhang, X.J. Liang, Gold nanoparticles: Emerging paradigm for targeted drug delivery system, Biotech. Adv. 31 (2013) 593-606.
DOI: 10.1016/j.biotechadv.2012.10.002
Google Scholar
[3]
A. Zaman, N. Ali, M. Sajid, Numerical simulation of pulsatile flow of blood in a porous-saturated overlapping stenosed artery, Math. Comput. Simul. 134 (2017) 1-16.
DOI: 10.1016/j.matcom.2016.09.008
Google Scholar
[4]
A.S. Udriște, A.C. Burdușel, A.G. Niculescu, M. Rădulescu, A.M. Grumezescu, Metal-based nanoparticles for cardiovascular diseases, Int. J. Mol. Sci. 25 (2024) 1001.
DOI: 10.3390/ijms25021001
Google Scholar
[5]
B. Tripathi, B.K. Sharma, Two-phase analysis of blood flow through a stenosed artery with the effects of chemical reaction and radiation, Ric. Mat. 73 (2024) 151-177.
DOI: 10.1007/s11587-021-00571-7
Google Scholar
[6]
B.K. Sharma, U. Khanduri, R. Gandhi, T. Muhammad, Entropy generation analysis of a ternary hybrid nanofluid (Au-CuO-GO/blood) containing gyrotactic microorganisms in bifurcated artery, Int. J. Numer. Methods. Heat. Fluid. Flow. 34 (2024) 980-1020.
DOI: 10.1108/hff-07-2023-0439
Google Scholar
[7]
D.A. Sipkins, D.A. Cheresh, M.R. Kazemi, L.M. Nevin, M.D. Bednarski, K.C. Li, Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging, Nat. Med. 4 (1998) 623-626.
DOI: 10.1038/nm0598-623
Google Scholar
[8]
D.B. Chithrani, M. Dunne, J. Stewart, C. Allen, D.A. Jaffray, Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier, Nanomedicine. 6 (2010) 161-169.
DOI: 10.1016/j.nano.2009.04.009
Google Scholar
[9]
E.A. Algehyne, N.A. Ahammad, M.E. Elnair, M. Zidan, Y.Y. Alhusayni, B.O. El-Bashir, F. Alzahrani, Entropy optimization and response surface methodology of blood hybrid nanofluid flow through composite stenosis artery with magnetized nanoparticles (Au-Ta) for drug delivery application, Sci. Rep. 13 (2023) 9856.
DOI: 10.1038/s41598-023-36931-6
Google Scholar
[10]
G.D. Smith, Numerical solution of partial differential equations: finite difference methods, Oxford University Press, 1985.
Google Scholar
[11]
G.K. Devi, P. Suruthi, R. Veerakumar, S. Vinoth, R. Subbaiya, S. Chozhavendhan, A review on metallic gold and silver nanoparticles, Res. J. Pharm. Tech. 12 (2019) 935-943.
DOI: 10.5958/0974-360x.2019.00158.6
Google Scholar
[12]
H. Waqas, U. Farooq, D. Liu, M. Alghamdi, S. Noreen, T. Muhammad, Numerical investigation of nanofluid flow with gold and silver nanoparticles injected inside a stenotic artery, Mater. Des. 223 (2022) 111130.
DOI: 10.1016/j.matdes.2022.111130
Google Scholar
[13]
H.T. Basha, K. Rajagopal, N.A. Ahammad, S. Sathish, S.R. Gunakala, Finite difference computation of Au‐Cu/magneto‐bio‐hybrid nanofluid flow in an inclined uneven stenosis artery, Complexity. 2022 (2022) 2078372.
DOI: 10.1155/2022/2078372
Google Scholar
[14]
J. Tripathi, B. Vasu, O.A. Bég, R.S.R. Gorla, Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery: Biomedical drug delivery simulation, Proc. Inst. Mech. Eng. H: J. Eng. Med. 235 (2021) 1175-1196.
DOI: 10.1177/09544119211026095
Google Scholar
[15]
J.Z. Guo, H. Cui, W. Zhou, W. Wang, Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide, J. Photochem. Photobiol. A: Chem. 193 (2008) 89-96.
DOI: 10.1016/j.jphotochem.2007.04.034
Google Scholar
[16]
K.A. Hoffmann, S.T. Chiang, Computational fluid dynamics, Volume I., Engineering Education System, 2000.
Google Scholar
[17]
Poonam, B.K. Sharma, Mathematical analysis of hybrid nanoparticles (Au−Al2O3) on MHD blood flow through a curved artery with stenosis and aneurysm using hematocrit-dependent viscosity, in: S. Banerjee, A. Saha (Eds.), Nonlinear Dynamics and Applications, Springer Proceedings in Complexity. Springer, Cham. 2022.
DOI: 10.1007/978-3-030-99792-2_34
Google Scholar
[18]
R. Gandhi, B.K. Sharma, C. Kumawat, O.A. Beg, Modeling and analysis of magnetic hybrid nanoparticle (Au-Al2O3/blood) based drug delivery through a bell-shaped occluded artery with joule heating, viscous dissipation and variable viscosity effects, Proc. Inst. Mech. Eng. E J. Proc. Mech. Eng. 236 (2022) 2024-2043.
DOI: 10.1177/09544089221080273
Google Scholar
[19]
S. Kumar, S. Kumar, Blood flow through an elliptical stenosed artery with the heat source and chemical reaction, Res. J. Biotech. 17 (2022) 82-90.
DOI: 10.25303/1712rjbt82090
Google Scholar
[20]
S. Kumar, S. Kumar, Blood flow with heat transfer through different geometries of stenotic arteries, Trends Sci. 20 (2023) 6965-6965.
DOI: 10.48048/tis.2023.6965
Google Scholar
[21]
S.A. Devi, S.S.U. Devi, Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int. J. Nonlin. Sci. Numer. Simul. 17 (2016) 249-257.
DOI: 10.1515/ijnsns-2016-0037
Google Scholar
[22]
T. Elnaqeeb, N.A. Shah, K.S. Mekheimer, Hemodynamic characteristics of gold nanoparticle blood flow through a tapered stenosed vessel with variable nanofluid viscosity, Bionanosci. 9 (2019) 245-255.
DOI: 10.1007/s12668-018-0593-5
Google Scholar
[23]
Y.A. Krutyakov, A.A. Kudrinskiy, A.Y. Olenin, G.V. Lisichkin, Synthesis and properties of silver nanoparticles: Advances and prospects, Russ. Chem. Rev. 77 (2008) 233.
DOI: 10.1070/rc2008v077n03abeh003751
Google Scholar