[1]
Iqbal M. et al. "Nanoparticles: Fundamentals, synthesis, and applications", In Nano pharmaceuticals: Principles and Applications, Springer (2018)
Google Scholar
[2]
Jeevanandam J., et al. "Review on nanoparticles and nanostructured materials: History, sources, toxicity, and regulations." Beilstein Journal of Nanotechnology, 9 (2018) 1050-1074
DOI: 10.3762/bjnano.9.98
Google Scholar
[3]
Khan I. et al. "Nanoparticles: Properties, applications and toxicities". Arabian Journal of Chemistry, 12(7), (2017) 908-931
Google Scholar
[4]
Li. X., et al. "Biosynthesis of nanoparticles by microorganisms and their applications" Journal of Nanomaterials, (2011)
Google Scholar
[5]
Muller A. and Cheetham, A. K. "The chemistry of nanomaterials: Synthesis, properties and applications", (2004)
Google Scholar
[6]
Mohamed M. M. and Ebrahim M. A. "Synthesis and applications of metal nanoparticles decorated nanomaterials". In Nanomaterials: Applications and Properties CRC Press, (2012) 247-280,.
Google Scholar
[7]
Murthy S.K. "Nanoparticles in modern medicine: State of the art and future challenges". International Journal of Nanomedicine, 2(2) (2007) 129-141
Google Scholar
[8]
Bhattacharjee S., et al. "Copper nanoparticles: Synthetic strategies, properties and multifunctional application". International Journal of Nanoscience, 18(5), (2019) 1950025
Google Scholar
[9]
Chen D. et al. "Synthesis and electrical properties of uniform copper nanoparticles for electronic applications". Journal of Materials Science, 44(4), (2009) 1076-1081
Google Scholar
[10]
Chatterjee T., and Chakraborty S., "Copper nanoparticle synthesis and its application as a surface enhanced Raman scattering (SERS) substrate". Materials Letters, 125 (2014) 229-232.
Google Scholar
[11]
Dada A. O., et al. "Preparation and characterization of copper nanoparticles: A green approach". Journal of Bio nanoscience, 9(5) (2015) 402-407.
Google Scholar
[12]
Chen Y., and Zhang Y., "Synthesis and characterization of copper nanoparticles supported on carbon nanotubes". Chemical Physics Letters, 524 (2012) 92-97.
Google Scholar
[13]
Nirmala M., and Kavitha B., "Synthesis of copper nanoparticles by using Ocimum sanctum L. (Tulsi) and Piper nigrum L. (Pepper Seed)" World scientific News, 150 (2020) 105-117.
Google Scholar
[14]
David L., et al. "Green synthesis, characterization and anti- inflammatory activity of silver nanoparticles using European black elderberry fruits extract". Colloids Surf. B Biointerfaces. 122 (2014) 767-777.
DOI: 10.1016/j.colsurfb.2014.08.018
Google Scholar
[15]
Ales p., et al. "Antifungal activity of silver nanoparticles against Candida spp". Biomaterials'. 30 (2009) 6333-6340.
DOI: 10.1016/j.biomaterials.2009.07.065
Google Scholar
[16]
Pradell T., Climent-Font A., et al. "Metallic and non-metallic shine in cluster: An elastic ion backscattering study". J. Appl. Phys. 101 (2007) 103518.
DOI: 10.1063/1.2734944
Google Scholar
[17]
Poole C.P., and Owens F.J. "Introduction to Nanotechnology". John Wiley & Sons; New York, NY, USA, 2003.
Google Scholar
[18]
Deepa N. and Karthikeyan S. "Synthesis and characterization of copper nanoparticles using Daucus carota extract for the photocatalytic degradation of Congo red dye". Optik - International Journal for Light and Electron Optics, 127(18) (2015) 7411-7418.
Google Scholar
[19]
El-Batal, et al. "Synthesis of copper nanoparticles using natural extracts of Rosmarinus officinalis and their antimicrobial activity". Nano Biomedicine and Engineering, 12(4) (2020) 292-302.
Google Scholar
[20]
Khani R., et al. "Green synthesis and characterization of copper nanoparticles by a novel method: Electro-exploding wire technique". Journal of Molecular Liquids, 263 (2018) 428-430.
Google Scholar
[21]
Kharissova O.V., et al. "The green synthesis of nanoparticles". Trac trends in Analytical Chemistry 47 (2013) 24-31
Google Scholar
[22]
Chandra, S., et al. "Synthesis and characterization of copper". nanoparticles by reducing agent. Saudi Chem. Soc. 18 (2014) 149- 153.
Google Scholar
[23]
Feng, Y., et al. "Reduction of 3-nitro-4-methoxy-acetylaniline to 3-amino-4-methoxy-acetylaniline catalyzed by metallic Cu nanoparticles at low reaction temperature". Chem. Eng. J. 262 (2015) 427-435.
DOI: 10.1016/j.cej.2014.09.120
Google Scholar
[24]
Varshney, R., Bhadauria S., "Characterization of copper nanoparticles synthesized by a novel microbiological method". JOM 62 (12) (2010) 102-104.
DOI: 10.1007/s11837-010-0171-y
Google Scholar
[25]
Volokitin, et al. "Quantum- size effects in the thermodynamic properties of metallic nanoparticles". Nature 384 (1996) 6610.
Google Scholar
[26]
Awwad A.M., and Abdeen, A. O. " Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity". International Journal of Industrial Chemistry, 4(1) (2013) 29.
DOI: 10.1186/2228-5547-4-29
Google Scholar
[27]
Bharathi D. and Raja M. "Green synthesis of copper nanoparticles using leaf extract and their antibacterial activity against fish bacterial pathogens'. Materials Today: Proceedings, 21 (2020) 926-933.
Google Scholar
[28]
Chowdhury S., et al. "Synthesis, characterization and stability of copper nanoparticles in aqueous and non-aqueous media: A green approach". Polyhedron, 81 (2014) 78-82.
Google Scholar
[29]
Yeshchenko, O. A., and Alexeenko A.A., "Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix". Mater. Sci. Eng., B 137 (1), (2007).
DOI: 10.1016/j.mseb.2006.11.030
Google Scholar
[30]
Reibold M., N., et al. " Materials: Carbon nanotubes in an ancient Damascus sabre Nature", 2006.
Google Scholar
[31]
Faraday M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philos. Trans. R. Soc. Lond, 1857.
Google Scholar
[32]
Zhu, H.-T., et al. "Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave Cryst. Growth" 270 (3-4) (2004) 722-728.
DOI: 10.1016/j.jcrysgro.2004.07.008
Google Scholar
[33]
Eigler D.M., and Schweizer E.K., "Positioning single atoms with a scanning tunnelling microscope". Nature, 1990.
DOI: 10.1038/344524a0
Google Scholar
[34]
Binnig G., et al. "Atomic Force Microscope". Phys. Rev. Lett.; 56 (1986) 930–933.
DOI: 10.1103/physrevlett.56.930
Google Scholar