Enhancement of Thermoplasmonic Characteristics in Hg-Au/Ag Core-Shell Nanoparticles

Article Preview

Abstract:

The present research explores the tunable thermoplasmonic response of spherical core-shell nanostructures through theoretical analysis based on the Mie theory. The study examines the effects of gold (Au) and silver (Ag) shell thickness on mercury (Hg) nanoparticles in a water media (n = 1.33), with systematically varying core sizes between the range 5 nm to 20 nm and shell thicknesses 2 nm to 20 nm for sensing, photonic, and photothermal applications. The optical and thermoplasmonic characteristics are investigated for various core-shell ratio at different localized surface plasmon resonance (LSPR) wavelengths, covering a spectrum from 250 nm to 850 nm. It is observed that the absorption peak spectra are found between 502 nm-537 nm and 345 nm-456 nm wavelengths with Au and Ag shell on Hg-core. Maximum values of absorption cross-section spectra is revealed at 1.80E-14 m2 and 1.57E-14 m2 of wavelengths 536 nm and 380 nm. Also, 𝐽0max is calculated 22 and 31.5 for Au and Ag shell thickness of 02 nm on 20 nm Hg-core and maximum temperature rise at 5.91°C of 20 nm Au shell thickness as compared to Ag shell under 1*104 W/cm2 laser irradiation. The results indicate that the temperature generated by these core-shell nanoparticles can be modulated by material’s nature, core radius, gold/silver shell thickness, and the surrounding medium. Further, the examined core-shell nanoparticles show potential as effective heat sources in various applications, including photothermal cancer therapy, cell optoporation, and sterilization and disinfection of medical equipment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-135

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Conde, G. Doria, P. Baptista, Noble metal nanoparticles applications in cancer, Journal of drug delivery 2012 (2012) 751075.

DOI: 10.1155/2012/751075

Google Scholar

[2] L. Lu, G. Burkey, I. Halaciuga, D.V. Goia, Core–shell gold/silver nanoparticles: Synthesis and optical properties, Journal of colloid and interface science 392 (2013) 90-95.

DOI: 10.1016/j.jcis.2012.09.057

Google Scholar

[3] C. Zhang, J. Qi, Y. Li, Q. Han, W. Gao, Y. Wang, J. Dong, Surface-plasmon-assisted growth, reshaping and transformation of nanomaterials, Nanomaterials 12 (2022) 1329.

DOI: 10.3390/nano12081329

Google Scholar

[4] A. Akouibaa, A. Derouiche, H. Redouane, Numerical study of the effects of polymeric shell on plasmonic resonance of gold nanorods, International Journal of Computational Materials Science and Engineering, 3 (2014) 1450024.

DOI: 10.1142/s2047684114500249

Google Scholar

[5] D. Capelli, V. Scognamiglio, R. Montanari, Surface plasmon resonance technology: Recent advances, applications and experimental cases, TrAC Trends in Analytical Chemistry, 163 (2023) 117079.

DOI: 10.1016/j.trac.2023.117079

Google Scholar

[6] A. Akouibaa, R. Masrour, A. Jabar, M. Benhamou, A. Derouiche, Optical and Dielectric Properties of Plasmonic Core-Shell Nanoparticles: Fe2O3/Au and Fe3O4/Au, Journal of Cluster Science, (2021) 1-8.

DOI: 10.1007/s10876-021-02133-1

Google Scholar

[7] Y.J. Zhang, P.M. Radjenovic, X.S. Zhou, H. Zhang, J.L. Yao, J.F. Li, Plasmonic core–shell nanomaterials and their applications in spectroscopies, Advanced Materials, 33 (2021) 2005900.

DOI: 10.1002/adma.202005900

Google Scholar

[8] P. Bhatia, Comparative study of thermoplasmonic properties in core-shell nanoparticles for heat generation applications, Optical and Quantum Electronics, 55 (2023) 928.

DOI: 10.1007/s11082-023-05162-4

Google Scholar

[9] P. Bhatia, S.S. Verma, M.M. Sinha, Size-Dependent Ris and FOM of Ag-Fe and Au-Fe bimetallic alloys in triangular prism: a DDA study, Photonic Sensors, 9 (2019) 246-258.

DOI: 10.1007/s13320-019-0547-8

Google Scholar

[10] R. Borah, R. Ninakanti, S. Bals, S.W. Verbruggen, Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration, Scientific Reports, 12 (2022) 15738.

DOI: 10.1038/s41598-022-20117-7

Google Scholar

[11] J.B. Vines, J.H. Yoon, N.E. Ryu, D.J. Lim, H. Park, Gold nanoparticles for photothermal cancer therapy, Frontiers in Chemistry, 7 (2019) 167.

DOI: 10.3389/fchem.2019.00167

Google Scholar

[12] P. Bhatia, S.S. Verma, M.M. Sinha, Magneto-plasmonic Co@ M (M= Au/Ag/Au-Ag) core-shell nanoparticles for biological imaging and therapeutics, Journal of Quantitative Spectroscopy and Radiative Transfer, 251 (2020) 107095.

DOI: 10.1016/j.jqsrt.2020.107095

Google Scholar

[13] Y. Wang, A. Barhoumi, R. Tong, W. Wang, T. Ji, X. Deng, L. Li, S.A. Lyon, G. Reznor, D. Zurakowski, D.S. Kohane, BaTiO3-core Au-shell nanoparticles for photothermal therapy and bimodal imaging, Acta Biomaterialia, 72 (2018) 287-294.

DOI: 10.1016/j.actbio.2018.03.029

Google Scholar

[14] A. Lalisse, G. Tessier, J. Plain, G. Baffou, Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion, The Journal of Physical Chemistry C, 119 (2015) 25518-25528.

DOI: 10.1021/acs.jpcc.5b09294

Google Scholar

[15] G. Baffou, R. Quidant, Thermoplasmonics. In: World Scientific Handbook of Metamaterials and Plasmonics: Recent Progress in the Field of Nanoplasmonics (2018) 379-407.

DOI: 10.1142/9789813228726_0010

Google Scholar

[16] G. Baffou, R. Quidant F.J. García de Abajo, Nanoscale control of optical heating in complex plasmonic systems, ACS Nano, 4 (2010) 709-16.

DOI: 10.1021/nn901144d

Google Scholar

[17] D. Ma, P. Tuersun, L. Cheng, Y. Zheng, R. Abulaiti, PyMieLab_V1. 0: A software for calculating the light scattering and absorption of spherical particles, Heliyon, 8 (2022) e11469.

DOI: 10.1016/j.heliyon.2022.e11469

Google Scholar

[18] P.B. Johnson, R.W. Christy, Optical constants of the noble metals, Physical Review B, 6 (1972) 4370-4379.

DOI: 10.1103/physrevb.6.4370

Google Scholar

[19] T. Inagaki, E.T. Arakawa, M.W. Williams, Optical properties of liquid mercury, Physical Review B, 23 (1981) 5246.

Google Scholar