Preliminary Biocompatibility Studies of Nano-Zinc Bioceramic Orbital Implant for Anophthalmic Socket Application

Article Preview

Abstract:

The increasing demand for effective ocular prosthetics has led to the exploration of innovative materials for orbital implants. The study focuses on the preliminary biocompatibility assessment of nanozinc bioceramic orbital implant intended for anophthalmic socket applications. These implants aim to address common complications such as infection and inflammation in patients requiring ocular prostheses. Bioceramic orbital implants were fabricated using conventional techniques using biphasic calcium phosphates and kaolin clay as raw materials. The bioceramic material, engineered for its antibacterial properties, is evaluated for its cytotoxic response. In vitro tests are conducted to determine the cellular response and antibacterial efficacy of the implants. Effect of different loadings of nanozinc oxide onto the bioceramic orbital implant were investigated. Disc diffusion method using test organisms Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) has revealed the resistance of the bioceramic orbital implant against bacterial attack. Moreover, MTT cytotoxicity test has shown fibroblast cell viability indicating good biocompatibility. Ultimately, the bioceramic orbital implant has presented no adverse effects upon exposure to Albino rabbits using dermal and eye irritation tests. The findings from this preliminary research will provide crucial insights into the feasibility and safety of using antibacterial bioceramic materials for orbital implants, potentially improving clinical outcomes for patients with anophthalmic sockets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-106

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zhao, Y. Chen, Y. Zheng, J. Xu, C. Zhang, M. Fu and K. Xiong, Front. Cell. Infect. Microbiol. 13, 1-12 (2023).

Google Scholar

[2] K.J. Wang, S.S. Li and H.Y. Wang, Medicine (Baltimore) 99(29), 1-5 (2020).

Google Scholar

[3] P.A. Penitente, E.V.F. Da Silva, M.C. Goiato, L.L.P. Manicoba, V.G.B. Brito, K.H.L. Turcio, A.S. Rodrigues, B.E. Nagay and D.M. Dos Santos, Antibiot. (Basel) 11 (1486), 1-16 (2022).

Google Scholar

[4] E.V.F. Da Silva, M.C. Goiato, L.L.P. Manicoba, L.D.R. Bonatto, R.A. de Medeiros, D.M. Dos Santos, E.C. Rangel and E.H.P de Oliveira, Toxicol In Vitro 36, 180-185 (2016).

Google Scholar

[5] K. Pine, B. Sloan, J. Stewart and R.J. Jacobs, Clin. Exp. Ophthalmol. 39 (1), 47-52 (2011).

Google Scholar

[6] J.R. You, J.H. Seo, Y.H. Kim and W.C. Choi, Jpn. J. of Ophthalmol. 47 (5), 512-518 (2003).

Google Scholar

[7] A.L. Miguel, M. Teson, V.M. Montañez, A.E. de Salamanca, M.E. Stern, M. Calonge, M.J.G. Garcia, Am. J. Ophthalmol. 157 (4), 788-798 (2014).

Google Scholar

[8] X.Y. Chen, X. Yang and X.L. Fan, Front Bioeng Biotechnol 9 (2022).

Google Scholar

[9] V. Patel, D. Allen, A.M.S. Morley and R. Malhorta, Orbit 28 (6), 339-341 (2009).

Google Scholar

[10] F. Baino and C.V. Brovarone, Acta Biomater 10 (8), 3372-3397 (2014).

Google Scholar

[11] J.P. Reyes, J.R. Celorico, L.C. dela Cuesta, J.M. Filo, L.G. Daan, S.T. Bernardo and J. Abano, Philipp. J. Sci. 129 (2), 93-99 (2000).

Google Scholar

[12] J.A. Tumbocon, J.P. Reyes, J.R. Celorico, et al., Philip. Technol. J. 24 (2), 27-52 (1999).

Google Scholar

[13] M.S. Ramirez and M.E. Tolmasky, Molecules 22 (11), 2267 (2017).

Google Scholar

[14] M. Fujii, T. Karumai, R. Yamamoto, E. Kobayashi, K. Ogawa, M. Tounai, J. Lipman, Y. Hayashi, Expert Opin. Drug Metab. Toxicol. 16 (5), 415-430 (2020).

DOI: 10.1080/17425255.2020.1750597

Google Scholar

[15] M.G. Papich, Oxacillin Sodium, in: M.G. Papich (Ed.), Saunders Handbook of Veterinary Drugs Small and Large Animal, fourth ed., Elsevier, Missouri, 2016, pp.585-586.

DOI: 10.1016/b978-0-323-24485-5.00425-3

Google Scholar

[16] Information on https://www.cdc.gov/mrsa/php/laboratories/index.html

Google Scholar

[17] Clinical and Laboratory Standards Institute, M100 Performance Standards for Antimicrobial Susceptibility Testing, 30 ed., CLSI, Pennsylvania, 2020.

Google Scholar

[18] E. Hoseinzadeh, M.Y. Alikhani, M.R. Samarghandi, M.S. Siboni, Desalin. Water Treat. 52 (25-27), 4969-4976 (2014).

DOI: 10.1080/19443994.2013.810356

Google Scholar

[19] S. Riahi, N.B. Moussa, M. Lajnef, N. Jebari, A. Dabek, R. Chtourou, G. Guisbiers, S. Vimont, E. Herth, J. Mol. Liq. 387 (2023).

DOI: 10.2139/ssrn.4328040

Google Scholar

[20] C.R. Mendes, G. Dilarri, C.F. Forsan, V.D.M.R. Sapata, P.R.M. Lopes, P.B. de Moraes, R.N. Montagnolli, H. Ferreira, E.D. Bidoia, Nature Portfolio 12, 2658 (2022).

DOI: 10.21203/rs.3.rs-1054432/v1

Google Scholar

[21] N. Babayevska, L. Przysiecka, I. Iatsunskyi, G. Nowaczyk, M. Jarek, E. Janiszewska and S. Jurga, Scientific Reports 12 (2022).

DOI: 10.1038/s41598-022-12134-3

Google Scholar

[22] A. Kozelskaya, K.N. Verzunova, I.O. Akimchenko, J. Frueh, V.I. Petrov, G.B. Slepchenko, O.V. Bakina, M.I. Lerner, L.K. Brizhan, D.V. Davydov, A.A. Kerimov, E.G. Cherempey, S.E. Krylov, S. Rutkowski and S.I. Tverdokhlebov, Biomimetics (Basel) 8(5), (2021).

DOI: 10.3390/biomimetics8050444

Google Scholar

[23] A.A. Tayel, W.F. El Tras, S. Moussa, A.F. El-baz, H. Mahrous, M.F. Salem, L. Brimer, Journ. of Food Safety 31 (2), 211-218 (2011).

DOI: 10.1111/j.1745-4565.2010.00287.x

Google Scholar

[24] B.R. da Silva, M.P. Abucafy, E.B. Manaia, J.A.O. Junior, B.G.C. Andreo, R.C.L.R. Prieto, L.A. Chiavacci, Int J Nanomedicine 14, 9395-9410 (2019).

Google Scholar

[25] S. Weiskirchen, A.M. Monteiro, R. Borojevic, R. Weiskirchen, Cells 13 (22), 1861 (2024).

Google Scholar

[26] M. Mapara, B.S. Thomas, and K.M. Bhat, Dent. Res. J. 9(1), 111-118 (2012).

Google Scholar