First-Principles Study on Structural, Electronic and Optical Properties of Two-Dimensional Silicene Quantum Dots

Article Preview

Abstract:

In this study, detailed investigations of the structural, electronic, and optical properties of two-dimensional silicene quantum dots (SiQDs-2D) were carried out using first-principles calculations within the framework of density functional theory (DFT). The SiQDs-2D structure was constructed from 13 Si atoms arranged in a hexagonal lattice and passivated by 9 H atoms to enhance stability. The cohesive energy was calculated to be about –2.986 eV, confirming the dynamical stability of the system. The optimized geometry shows that the Si–Si bond lengths are approximately 2.247 Å (nearest neighbor), 3.637 Å (next-nearest neighbor), and 4.275 Å (opposite sites in a hexagon), with an average bond angle of 108.05° and a buckling height of about 0.8 Å. The electronic band structure and density of states (DOS) indicate that SiQDs-2D exhibits semiconducting behavior with a narrow HOMO–LUMO gap, strongly influenced by edge effects and hydrogen passivation. The charge density distribution shows that the HOMO states are mainly localized at the edges, while the LUMO states are more delocalized across the lattice, reflecting unique electronic transition mechanisms in the system. In terms of optical properties, SiQDs-2D presents strong absorption in the ultraviolet region (peak at ~5 eV) with an absorption coefficient of about 10⁸ m⁻¹, accompanied by a low reflectivity in the visible region. The real and imaginary parts of the dielectric function reveal the presence of intrinsic plasmon resonances in the range of 5–6 eV, while the JDOS confirms the role of dominant electronic transitions in the UV region. These results not only demonstrate the stability and unique electronic–optical features of SiQDs-2D but also highlight their potential applications in optoelectronic devices, UV sensors, and ultraviolet shielding materials

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-72

Citation:

Online since:

February 2026

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Man, Y. Zhang, Z. Wang, Two-dimensional silicene/silicon and its derivatives: Properties, synthesis and frontier applications, Mater. Today, 67 (2023) 566–591.

DOI: 10.1016/j.mattod.2023.06.022

Google Scholar

[2] M.A. Kharadi, A.A. Shaikh, S.S. Shaikh, Silicene: From material to device applications, ECS J. Solid State Sci. Technol., 9(11) (2020) 115031.

DOI: 10.1149/2162-8777/abd09a

Google Scholar

[3] A. Bao, X. Li, X. Guo, H. Yao, M. Chen, Tuning the structural, electronic, mechanical and optical properties of silicene monolayer by chemical functionalization: A first-principles study, Vacuum, 203 (2022) 111226.

DOI: 10.1016/j.vacuum.2022.111226

Google Scholar

[4] L. Masson, G. Prévot, Epitaxial growth and structural properties of silicene and other 2D allotropes of Si, Nanoscale Adv., 5(6) (2023) 1574–1599.

DOI: 10.1039/d2na00808d

Google Scholar

[5] R.E. Roman, S.W. Cranford, Mechanical properties of silicene, Comput. Mater. Sci., 82 (2014) 50–55.

Google Scholar

[6] H. Oughaddou, A. Bouslama, H. Enriquez, A. Kara, Silicene, a promising new 2D material, Prog. Surf. Sci., 90(1) (2015) 46–83.

Google Scholar

[7] J. Zhao, Z. Li, J. Wang, Rise of silicene: A competitive 2D material, Prog. Mater. Sci., 83 (2016) 24–151.

Google Scholar

[8] A.M. Tokmachev, D.V. Melnikov, A.A. Demin, Emerging two-dimensional ferromagnetism in silicene materials, Nat. Commun., 9 (2018) 1672.

Google Scholar

[9] G. Shan, Y. Zhang, Z. Wang, Recent progress in emergent two-dimensional silicene, Nanoscale, 15(7) (2023) 2982–2996.

DOI: 10.1039/d2nr05809j

Google Scholar

[10] N.T.T. Tran, G. Gumbs, D.K. Nguyen, M.F. Lin, Fundamental properties of metal-adsorbed silicene: A DFT study, ACS Omega, 5(23) (2020) 13760–13769.

DOI: 10.1021/acsomega.0c00905

Google Scholar

[11] Y.L. Song, Z.X. Guo, W.F. Li, Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons, Appl. Surf. Sci., 256(21) (2010) 6313–6317.

DOI: 10.1016/j.apsusc.2010.04.009

Google Scholar

[12] L. Pan, J. Zhang, Y. Liu, Thermoelectric properties of armchair and zigzag silicene nanoribbons, Phys. Chem. Chem. Phys., 14(39) (2012) 13588–13593.

DOI: 10.1039/c2cp42645e

Google Scholar

[13] P. De Padova, C. Quaresima, C. Ottaviani, 1D graphene-like silicon systems: silicene nano-ribbons, J. Phys.: Condens. Matter, 24(22) (2012) 223001.

DOI: 10.1088/0953-8984/24/22/223001

Google Scholar

[14] C. Xu, Z. Zhang, X. Wang, Giant magnetoresistance in silicene nanoribbons, Nanoscale, 4(10) (2012) 3111–3117.

Google Scholar

[15] J. Kang, F. Wu, J. Li, Symmetry-dependent transport properties and magnetoresistance in zigzag silicene nanoribbons, Appl. Phys. Lett., 100(23) (2012) 233122.

DOI: 10.1063/1.4726276

Google Scholar

[16] T.H. Osborn, A.A. Farajian, Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution, Nano Res., 7(7) (2014) 945–952.

DOI: 10.1007/s12274-014-0454-7

Google Scholar

[17] Kh. Shakouri, M. Modarresi, H.R. Soleimani, Tunable spin and charge transport in silicene nanoribbons, Phys. Rev. B, 92(3) (2015) 035413.

Google Scholar

[18] K. Zberecki, T. Blachowicz, S. Krompiewski, Thermoelectric effects in silicene nanoribbons, Phys. Rev. B, 88(11) (2013) 115404.

Google Scholar

[19] G. Matyszczak, K. Krawczyk, A. Yedzikhanau, Computational Modeling of Properties of Quantum Dots and Nanostructures: From First Principles to Artificial Intelligence (A Review), Nanomaterials, 15(4) (2025) 272.

DOI: 10.3390/nano15040272

Google Scholar

[20] H. Sun, X. Wang, Y. Zhang, Recent advances in graphene quantum dots for sensing, Mater. Today, 16(11) (2013) 433–442.

Google Scholar

[21] P. Tian, Y. Zhang, X. Wang, Graphene quantum dots from chemistry to applications, Mater. Today Chem., 10 (2018) 221–258.

Google Scholar

[22] W. Chen, X. Wang, Y. Zhang, Synthesis and applications of graphene quantum dots: a review, Nanotechnol. Rev., 7(2) (2018) 157–185.

Google Scholar

[23] R. Zhang, Y. Zhang, X. Wang, Electronic and magneto-optical properties of monolayer phosphorene quantum dots, 2D Mater., 2(4) (2015) 045012.

DOI: 10.1088/2053-1583/2/4/045012

Google Scholar

[24] P. Vishnoi, Y. Zhang, X. Wang, Phosphorene quantum dots, Chem. Phys. Lett., 699 (2018) 223–228.

Google Scholar

[25] V.A. Saroka, Y. Zhang, X. Wang, Electro-optical properties of phosphorene quantum dots, Phys. Rev. B, 96(8) (2017) 085436.

Google Scholar

[26] M.O. Valappil, S. Alwarappan, V.K. Pillai, Phosphorene quantum dots: Synthesis, properties and catalytic applications, Nanoscale, 14(4) (2022) 1037–1053.

DOI: 10.1039/d1nr07340k

Google Scholar

[27] H. Abdelsalam, A.M. El-Sayed, M.A. El-Mansy, Electro-absorption of silicene and bilayer graphene quantum dots, J. Appl. Phys., 120(1) (2016) 014303.

Google Scholar

[28] P. Hu, X. Wang, Y. Zhang, Silicene quantum dots: synthesis, spectroscopy, and electrochemical studies, Langmuir, 34(8) (2018) 2834–2840.

DOI: 10.1021/acs.langmuir.7b04253

Google Scholar

[29] L.B. Drissi, M. Bousmina, A. Jorio, Graphene and silicene quantum dots for nanomedical diagnostics, RSC Adv., 10(2) (2020) 801–811.

DOI: 10.1039/c9ra08399e

Google Scholar

[30] H. Abdelsalam, A.M. El-Sayed, M.A. El-Mansy, Stability and electronic properties of edge functionalized silicene quantum dots: A first principles study, Physica E, 108 (2019) 339–346.

DOI: 10.1016/j.physe.2018.07.022

Google Scholar

[31] S. Ghosal, A. Ghosh, S. Sahu, Tetragonal silicene and germanene quantum dots: candidates for enhanced nonlinear optical and photocatalytic activity, J. Phys. Chem. C, 125(39) (2021) 21718–21728.

DOI: 10.1021/acs.jpcc.1c06583

Google Scholar

[32] R. Marwat, M. Iqbal, A. Khan, DFT calculation for the adsorptive voltammetric determination of Meloxicam using a pest electrode made of Functionalized Carbon nanotubes, J. Indian Chem. Soc., (2025) 101951.

DOI: 10.1016/j.jics.2025.101951

Google Scholar

[33] S. Vuckovic, Y. Zhang, X. Wang, Density functional analysis: The theory of density-corrected DFT, J. Chem. Theory Comput., 15(12) (2019) 6636–6646.

DOI: 10.1021/acs.jctc.9b00826

Google Scholar

[34] Y. Boran, H. Kara, A Comprehensive Density Functional Theory Analysis on Structural, Electronic, and Optical Properties of BiOF, Braz. J. Phys., 54(5) (2024) 159.

DOI: 10.1007/s13538-024-01523-w

Google Scholar

[35] N.N. Nyangiwe, Applications of density functional theory and machine learning in nanomaterials: A review, Next Mater., 8 (2025) 100683.

DOI: 10.1016/j.nxmate.2025.100683

Google Scholar

[36] M.A. Iron, J. Gropp, Cost-effective DFT calculations of equilibrium isotopic fractionation in large organic molecules, Phys. Chem. Chem. Phys., 21(32) (2019) 17555–17570.

DOI: 10.1039/c9cp02975c

Google Scholar

[37] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964) B864.

DOI: 10.1103/physrev.136.b864

Google Scholar

[38] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140 (1965) A1133.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[39] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21 (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[40] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, S. Baroni, Quantum ESPRESSO toward the exascale, J. Chem. Phys., 152 (2020) 154105.

DOI: 10.1063/5.0005082

Google Scholar

[41] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu, J. Chem. Phys., 132 (2010) 154104.

DOI: 10.1063/1.3382344

Google Scholar

[42] M. Fox, Optical Properties of Solids, 2nd ed., Oxford University Press, Oxford, 2010.

Google Scholar

[43] G. Onida, L. Reining, A. Rubio, Electronic excitations: density-functional versus many-body Green's-function approaches, Rev. Mod. Phys., 74(2) (2002) 601–659.

DOI: 10.1103/revmodphys.74.601

Google Scholar

[44] Y.U. Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th ed., Springer, Berlin, 2010.

Google Scholar

[45] S. Chowdhury, D. Jana, A theoretical review on electronic, magnetic and optical properties of silicene, Rep. Prog. Phys., 79(12) (2016) 126501.

DOI: 10.1088/0034-4885/79/12/126501

Google Scholar

[46] X. Hua, Y. Zhang, X. Wang, Controlling electronic properties of MoS₂/graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen, Phys. Chem. Chem. Phys., 20(3) (2018) 1974–1983.

DOI: 10.1039/c7cp07303h

Google Scholar

[47] M. He, Y. Zhang, X. Wang, Enhanced nonlinear saturable absorption of MoS₂/graphene nanocomposite films, J. Phys. Chem. C, 121(48) (2017) 27147–27153.

DOI: 10.1021/acs.jpcc.7b08850

Google Scholar

[48] H. Swaminathan, V. Ramar, K. Balasubramanian, Excited-state electron and energy transfer dynamics between 2D MoS₂ and GO/RGO for turn ON BSA/HSA sensing, J. Phys. Chem. C, 121(23) (2017) 12585–12592.

DOI: 10.1021/acs.jpcc.7b02611

Google Scholar

[49] M. Min, Y. Zhang, X. Wang, Photophysical dynamics in semiconducting graphene quantum dots integrated with 2D MoS₂ for optical enhancement in the near UV, ACS Appl. Mater. Interfaces, 13(4) (2021) 5379–5389.

DOI: 10.1021/acsami.0c18615

Google Scholar