[1]
Q. Man, Y. Zhang, Z. Wang, Two-dimensional silicene/silicon and its derivatives: Properties, synthesis and frontier applications, Mater. Today, 67 (2023) 566–591.
DOI: 10.1016/j.mattod.2023.06.022
Google Scholar
[2]
M.A. Kharadi, A.A. Shaikh, S.S. Shaikh, Silicene: From material to device applications, ECS J. Solid State Sci. Technol., 9(11) (2020) 115031.
DOI: 10.1149/2162-8777/abd09a
Google Scholar
[3]
A. Bao, X. Li, X. Guo, H. Yao, M. Chen, Tuning the structural, electronic, mechanical and optical properties of silicene monolayer by chemical functionalization: A first-principles study, Vacuum, 203 (2022) 111226.
DOI: 10.1016/j.vacuum.2022.111226
Google Scholar
[4]
L. Masson, G. Prévot, Epitaxial growth and structural properties of silicene and other 2D allotropes of Si, Nanoscale Adv., 5(6) (2023) 1574–1599.
DOI: 10.1039/d2na00808d
Google Scholar
[5]
R.E. Roman, S.W. Cranford, Mechanical properties of silicene, Comput. Mater. Sci., 82 (2014) 50–55.
Google Scholar
[6]
H. Oughaddou, A. Bouslama, H. Enriquez, A. Kara, Silicene, a promising new 2D material, Prog. Surf. Sci., 90(1) (2015) 46–83.
Google Scholar
[7]
J. Zhao, Z. Li, J. Wang, Rise of silicene: A competitive 2D material, Prog. Mater. Sci., 83 (2016) 24–151.
Google Scholar
[8]
A.M. Tokmachev, D.V. Melnikov, A.A. Demin, Emerging two-dimensional ferromagnetism in silicene materials, Nat. Commun., 9 (2018) 1672.
Google Scholar
[9]
G. Shan, Y. Zhang, Z. Wang, Recent progress in emergent two-dimensional silicene, Nanoscale, 15(7) (2023) 2982–2996.
DOI: 10.1039/d2nr05809j
Google Scholar
[10]
N.T.T. Tran, G. Gumbs, D.K. Nguyen, M.F. Lin, Fundamental properties of metal-adsorbed silicene: A DFT study, ACS Omega, 5(23) (2020) 13760–13769.
DOI: 10.1021/acsomega.0c00905
Google Scholar
[11]
Y.L. Song, Z.X. Guo, W.F. Li, Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons, Appl. Surf. Sci., 256(21) (2010) 6313–6317.
DOI: 10.1016/j.apsusc.2010.04.009
Google Scholar
[12]
L. Pan, J. Zhang, Y. Liu, Thermoelectric properties of armchair and zigzag silicene nanoribbons, Phys. Chem. Chem. Phys., 14(39) (2012) 13588–13593.
DOI: 10.1039/c2cp42645e
Google Scholar
[13]
P. De Padova, C. Quaresima, C. Ottaviani, 1D graphene-like silicon systems: silicene nano-ribbons, J. Phys.: Condens. Matter, 24(22) (2012) 223001.
DOI: 10.1088/0953-8984/24/22/223001
Google Scholar
[14]
C. Xu, Z. Zhang, X. Wang, Giant magnetoresistance in silicene nanoribbons, Nanoscale, 4(10) (2012) 3111–3117.
Google Scholar
[15]
J. Kang, F. Wu, J. Li, Symmetry-dependent transport properties and magnetoresistance in zigzag silicene nanoribbons, Appl. Phys. Lett., 100(23) (2012) 233122.
DOI: 10.1063/1.4726276
Google Scholar
[16]
T.H. Osborn, A.A. Farajian, Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution, Nano Res., 7(7) (2014) 945–952.
DOI: 10.1007/s12274-014-0454-7
Google Scholar
[17]
Kh. Shakouri, M. Modarresi, H.R. Soleimani, Tunable spin and charge transport in silicene nanoribbons, Phys. Rev. B, 92(3) (2015) 035413.
Google Scholar
[18]
K. Zberecki, T. Blachowicz, S. Krompiewski, Thermoelectric effects in silicene nanoribbons, Phys. Rev. B, 88(11) (2013) 115404.
Google Scholar
[19]
G. Matyszczak, K. Krawczyk, A. Yedzikhanau, Computational Modeling of Properties of Quantum Dots and Nanostructures: From First Principles to Artificial Intelligence (A Review), Nanomaterials, 15(4) (2025) 272.
DOI: 10.3390/nano15040272
Google Scholar
[20]
H. Sun, X. Wang, Y. Zhang, Recent advances in graphene quantum dots for sensing, Mater. Today, 16(11) (2013) 433–442.
Google Scholar
[21]
P. Tian, Y. Zhang, X. Wang, Graphene quantum dots from chemistry to applications, Mater. Today Chem., 10 (2018) 221–258.
Google Scholar
[22]
W. Chen, X. Wang, Y. Zhang, Synthesis and applications of graphene quantum dots: a review, Nanotechnol. Rev., 7(2) (2018) 157–185.
Google Scholar
[23]
R. Zhang, Y. Zhang, X. Wang, Electronic and magneto-optical properties of monolayer phosphorene quantum dots, 2D Mater., 2(4) (2015) 045012.
DOI: 10.1088/2053-1583/2/4/045012
Google Scholar
[24]
P. Vishnoi, Y. Zhang, X. Wang, Phosphorene quantum dots, Chem. Phys. Lett., 699 (2018) 223–228.
Google Scholar
[25]
V.A. Saroka, Y. Zhang, X. Wang, Electro-optical properties of phosphorene quantum dots, Phys. Rev. B, 96(8) (2017) 085436.
Google Scholar
[26]
M.O. Valappil, S. Alwarappan, V.K. Pillai, Phosphorene quantum dots: Synthesis, properties and catalytic applications, Nanoscale, 14(4) (2022) 1037–1053.
DOI: 10.1039/d1nr07340k
Google Scholar
[27]
H. Abdelsalam, A.M. El-Sayed, M.A. El-Mansy, Electro-absorption of silicene and bilayer graphene quantum dots, J. Appl. Phys., 120(1) (2016) 014303.
Google Scholar
[28]
P. Hu, X. Wang, Y. Zhang, Silicene quantum dots: synthesis, spectroscopy, and electrochemical studies, Langmuir, 34(8) (2018) 2834–2840.
DOI: 10.1021/acs.langmuir.7b04253
Google Scholar
[29]
L.B. Drissi, M. Bousmina, A. Jorio, Graphene and silicene quantum dots for nanomedical diagnostics, RSC Adv., 10(2) (2020) 801–811.
DOI: 10.1039/c9ra08399e
Google Scholar
[30]
H. Abdelsalam, A.M. El-Sayed, M.A. El-Mansy, Stability and electronic properties of edge functionalized silicene quantum dots: A first principles study, Physica E, 108 (2019) 339–346.
DOI: 10.1016/j.physe.2018.07.022
Google Scholar
[31]
S. Ghosal, A. Ghosh, S. Sahu, Tetragonal silicene and germanene quantum dots: candidates for enhanced nonlinear optical and photocatalytic activity, J. Phys. Chem. C, 125(39) (2021) 21718–21728.
DOI: 10.1021/acs.jpcc.1c06583
Google Scholar
[32]
R. Marwat, M. Iqbal, A. Khan, DFT calculation for the adsorptive voltammetric determination of Meloxicam using a pest electrode made of Functionalized Carbon nanotubes, J. Indian Chem. Soc., (2025) 101951.
DOI: 10.1016/j.jics.2025.101951
Google Scholar
[33]
S. Vuckovic, Y. Zhang, X. Wang, Density functional analysis: The theory of density-corrected DFT, J. Chem. Theory Comput., 15(12) (2019) 6636–6646.
DOI: 10.1021/acs.jctc.9b00826
Google Scholar
[34]
Y. Boran, H. Kara, A Comprehensive Density Functional Theory Analysis on Structural, Electronic, and Optical Properties of BiOF, Braz. J. Phys., 54(5) (2024) 159.
DOI: 10.1007/s13538-024-01523-w
Google Scholar
[35]
N.N. Nyangiwe, Applications of density functional theory and machine learning in nanomaterials: A review, Next Mater., 8 (2025) 100683.
DOI: 10.1016/j.nxmate.2025.100683
Google Scholar
[36]
M.A. Iron, J. Gropp, Cost-effective DFT calculations of equilibrium isotopic fractionation in large organic molecules, Phys. Chem. Chem. Phys., 21(32) (2019) 17555–17570.
DOI: 10.1039/c9cp02975c
Google Scholar
[37]
P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964) B864.
DOI: 10.1103/physrev.136.b864
Google Scholar
[38]
W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140 (1965) A1133.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[39]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21 (2009) 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[40]
P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, S. Baroni, Quantum ESPRESSO toward the exascale, J. Chem. Phys., 152 (2020) 154105.
DOI: 10.1063/5.0005082
Google Scholar
[41]
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu, J. Chem. Phys., 132 (2010) 154104.
DOI: 10.1063/1.3382344
Google Scholar
[42]
M. Fox, Optical Properties of Solids, 2nd ed., Oxford University Press, Oxford, 2010.
Google Scholar
[43]
G. Onida, L. Reining, A. Rubio, Electronic excitations: density-functional versus many-body Green's-function approaches, Rev. Mod. Phys., 74(2) (2002) 601–659.
DOI: 10.1103/revmodphys.74.601
Google Scholar
[44]
Y.U. Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th ed., Springer, Berlin, 2010.
Google Scholar
[45]
S. Chowdhury, D. Jana, A theoretical review on electronic, magnetic and optical properties of silicene, Rep. Prog. Phys., 79(12) (2016) 126501.
DOI: 10.1088/0034-4885/79/12/126501
Google Scholar
[46]
X. Hua, Y. Zhang, X. Wang, Controlling electronic properties of MoS₂/graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen, Phys. Chem. Chem. Phys., 20(3) (2018) 1974–1983.
DOI: 10.1039/c7cp07303h
Google Scholar
[47]
M. He, Y. Zhang, X. Wang, Enhanced nonlinear saturable absorption of MoS₂/graphene nanocomposite films, J. Phys. Chem. C, 121(48) (2017) 27147–27153.
DOI: 10.1021/acs.jpcc.7b08850
Google Scholar
[48]
H. Swaminathan, V. Ramar, K. Balasubramanian, Excited-state electron and energy transfer dynamics between 2D MoS₂ and GO/RGO for turn ON BSA/HSA sensing, J. Phys. Chem. C, 121(23) (2017) 12585–12592.
DOI: 10.1021/acs.jpcc.7b02611
Google Scholar
[49]
M. Min, Y. Zhang, X. Wang, Photophysical dynamics in semiconducting graphene quantum dots integrated with 2D MoS₂ for optical enhancement in the near UV, ACS Appl. Mater. Interfaces, 13(4) (2021) 5379–5389.
DOI: 10.1021/acsami.0c18615
Google Scholar