[1]
Y. Wang, X. Wang, Q. Sun, R. Li, and Y. Ji, "A covalent organic framework based on 1,3,5-tris(4-aminophenyl)benzene and terephthalaldehyde for solid-phase extraction of bisphenols," Microchim. Acta, vol. 188, no. 11, Art. no. 367, 2021.
DOI: 10.1007/s00604-021-04925-8
Google Scholar
[2]
J. Wu, L. Li, L. Cao, X. Liu, R. Li, and Y. Ji, "Chiral covalent organic frameworks with dual binding sites for high-performance enantioseparation," ACS Appl. Mater. Interfaces, vol. 15, no. 22, p.27214–27222, 2023.
DOI: 10.1021/acsami.3c04066
Google Scholar
[3]
B. Tang, W. Wang, H. Hou, Y. Liu, Z. Liu, L. Geng, L. Sun, and A. Luo, "A novel covalent organic framework for the efficient extraction of sulfonamides from meat samples," Chin. Chem. Lett., vol. 33, no. 2, p.898–902, 2022.
DOI: 10.1016/j.cclet.2021.06.089
Google Scholar
[4]
Y. Yan, X. Cai, S. Cheng, X. Xie, Y. Lan, J. Wu, J. Fan, S. Zheng, S. Cai, and W. Zhang, "Covalent organic frameworks for separation and analysis of complex samples," Sep. Sci. Plus, vol. 5, no. 12, p.671–681, 2022.
DOI: 10.1002/sscp.202200104
Google Scholar
[5]
N. Y. Xu, P. Guo, J. K. Chen, J. H. Zhang, B. J. Wang, S. M. Xie, and L. M. Yuan, "Chiral covalent organic frameworks for high-performance liquid chromatography enantioseparation," Talanta, vol. 235, Art. no. 122754, 2021.
DOI: 10.1016/j.talanta.2021.122754
Google Scholar
[6]
Y. Wang, S. Q. Zhuo, J. Hou, W. Li, and Y. Ji, "Ionic liquid-modified covalent organic frameworks for the selective extraction of phenoxy acid herbicides," ACS Appl. Mater. Interfaces, vol. 11, no. 51, p.48363–48369, 2019.
DOI: 10.1021/acsami.9b16720
Google Scholar
[7]
M. Ma, Y. Du, L. Zhang, J. Gan, and J. Yang, "Core-shell structured covalent organic frameworks for the extraction of benzoylurea insecticides," Microchim. Acta, vol. 187, no. 7, Art. no. 360, 2020.
DOI: 10.1007/s00604-020-04360-1
Google Scholar
[8]
X. Wang, J. Wu, X. Liu, X. Qiu, L. Cao, and Y. Ji, "Enhanced chiral recognition abilities of cyclodextrin covalent organic frameworks via chiral or achiral functional modification," ACS Appl. Mater. Interfaces, vol. 14, no. 22, p.25928–25936, 2022.
DOI: 10.1021/acsami.2c05572
Google Scholar
[9]
H. Huo, J. Guan, Z. Huang, K. Long, D. Zhang, S. Shi, and F. Yan, "Covalent organic framework-modified capillary columns for the separation of isomers," J. Sep. Sci., vol. 46, no. 14, Art. no. 2300117, 2023.
DOI: 10.1002/jssc.202300117
Google Scholar
[10]
L. Gu, J. Guan, Z. Huang, H. Huo, S. Shi, D. Zhang, and F. Yan, "Covalent organic frameworks as stationary phases for capillary electrochromatography," Electrophoresis, vol. 43, no. 13–14, p.1446–1454, 2022.
DOI: 10.1002/elps.202200029
Google Scholar
[11]
H. Luo, X. Bai, H. Liu, X. Qiu, J. Chen, and Y. Ji, "Covalent organic frameworks based solid phase extraction for the determination of trace contaminants," Sep. Purif. Technol., vol. 285, Art. no. 120336, 2022.
DOI: 10.1016/j.seppur.2021.120336
Google Scholar
[12]
B. Wang, X. Zhang, B. Wang, Q. Feng, Y. Luo, W. Wang, C.-F. Ding, and Y. Yan, "Magnetic covalent organic frameworks for the extraction of fluoroquinolones," Microchim. Acta, vol. 190, no. 10, Art. no. 393, 2023.
DOI: 10.1007/s00604-023-05952-3
Google Scholar
[13]
S. Zhuo, X. Wang, L. Li, S. Yang, and Y. Ji, "Chiral covalent organic frameworks for high-resolution gas chromatographic separation," ACS Appl. Mater. Interfaces, vol. 13, no. 26, p.31059–31065, 2021.
DOI: 10.1021/acsami.1c09238
Google Scholar
[14]
R. Q. Wang, X. B. Wei, and Y. Q. Feng, "Facile synthesis of covalent organic frameworks for the efficient extraction of organic pollutants," Chem. Eur. J., vol. 24, no. 43, p.10979–10983, 2018.
DOI: 10.1002/chem.201802564
Google Scholar
[15]
W. Wang, H. Shao, S. Zhou, D. Zhu, X. Jiang, G. Yu, and S. Deng, "Covalent organic frameworks for separation and purification: A review," ACS Appl. Mater. Interfaces, vol. 13, no. 41, p.48700–48708, 2021.
DOI: 10.1021/acsami.1c14043
Google Scholar
[16]
C. Li, C. Chen, J. Zhao, M. Tan, S. Zhai, Y. Wei, L. Wang, and T. Dai, "Covalent organic frameworks for drug delivery and cancer therapy," ACS Biomater. Sci. Eng., vol. 7, no. 8, p.3898–3907, 2021.
DOI: 10.1021/acsbiomaterials.1c00648
Google Scholar
[17]
Y. Zhang, J. Duan, D. Ma, P. Li, S. Li, H. Li, J. Zhou, X. Ma, X. Feng, and B. Wang, "Three-dimensional covalent organic frameworks with hierarchical porosity," Angew. Chem., vol. 129, no. 51, p.16531–16535, 2017.
DOI: 10.1002/ange.201710633
Google Scholar
[18]
Z. Mu et al., "Hierarchical microtubular covalent organic frameworks achieved by COF-to-COF transformation," Angew. Chem., vol. 62, no. 17, Art. no. e202300373, 2023.
DOI: 10.1002/anie.202300373
Google Scholar
[19]
C. Kappe, "Controlled microwave heating in modern organic synthesis," Angew. Chem. Int. Ed., vol. 43, no. 46, p.6250–6284, 2004.
DOI: 10.1002/anie.200400655
Google Scholar
[20]
V. Safarifard and A. Morsali, "Mechanochemical solid state transformations from a 3D lead(II) chloride triazole carboxylate coordination polymer to its bromide/thiocyanate analogs via anion replacements," CrystEngComm, vol. 14, no. 16, p.5130–5146, 2012.
DOI: 10.1039/c2ce25277e
Google Scholar
[21]
H. Jiang and Q. Xu, "Porous metal-organic frameworks as platforms for functional applications," Chem. Commun., vol. 47, no. 12, p.3351–3370, 2011.
DOI: 10.1039/c0cc05419d
Google Scholar
[22]
N. Kavhiza, M. Zargar, S. Prikhodko, and E. Pakina, "Comparison of three commercial DNA extraction kits for the enhancement of PCR assay sensitivity for Xanthomonas euvesicatoria pv. allii," J. Appl. Microbiol., vol. 132, no. 2, p.1221–1226, 2021.
DOI: 10.1111/jam.15280
Google Scholar
[23]
D. Ng, Z. Yang, and M. García-Garibay, "Total synthesis of (±)-herbertenolide by stereospecific formation of vicinal quaternary centers in a crystalline ketone," Org. Lett., vol. 6, no. 4, p.645–647, 2004.
DOI: 10.1021/ol0499250
Google Scholar
[24]
Y. Peng et al., "Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene," Angew. Chem., vol. 130, no. 34, p.11137–11141, 2018.
DOI: 10.1002/ange.201806732
Google Scholar
[25]
J. Lee, O. Farha, J. Roberts, K. Scheidt, S. Nguyen, and J. Hupp, "Metal-organic framework materials as catalysts," Chem. Soc. Rev., vol. 38, no. 5, p.1450–1459, 2009.
DOI: 10.1039/b807080f
Google Scholar
[26]
K. Martina, G. Cravotto, and R. Varma, "Impact of microwaves on organic synthesis and strategies toward flow processes and scaling up," J. Org. Chem., vol. 86, no. 20, p.13857–13872, 2021.
DOI: 10.1021/acs.joc.1c00865
Google Scholar
[27]
C. Xiao and Y. Xie, "The expanding energy prospects of metal-organic frameworks," Joule, vol. 1, no. 1, p.25–28, 2017.
DOI: 10.1016/j.joule.2017.08.014
Google Scholar
[28]
W. Mai et al., "Water-dispersible, responsive, and carbonizable hairy microporous polymeric nanospheres," J. Am. Chem. Soc., vol. 137, no. 41, p.13256–13259, 2015.
DOI: 10.1021/jacs.5b08978
Google Scholar
[29]
S. Mitchenko, T. Krasnyakova, R. Mitchenko, and A. Korduban, "Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4 salt," J. Mol. Catal. A Chem., vol. 275, no. 1–2, p.101–108, 2007.
DOI: 10.1016/j.molcata.2007.05.036
Google Scholar
[30]
C. Rodríguez-Carrillo, M. Benítez, J. El Haskouri, P. Amorós, and J. V. Ros-Lis, "Novel microwave-assisted synthesis of COFs: 2020 to 2022," Molecules, vol. 28, no. 7, Art. no. 3112, 2023.
DOI: 10.3390/molecules28073112
Google Scholar
[31]
H. Vardhan, G. Rummer, A. Deng, and S. Ma, "Large-scale synthesis of covalent organic frameworks: Challenges and opportunities," Membranes, vol. 13, no. 8, Art. no. 696, 2023.
DOI: 10.3390/membranes13080696
Google Scholar
[32]
X. Wang, J. Wu, X. Liu, X. Qiu, L. Cao, and Y. Ji, "Enhanced chiral recognition abilities of cyclodextrin covalent organic frameworks via chiral or achiral functional modification," ACS Appl. Mater. Interfaces, vol. 14, no. 22, p.25928–25936, 2022.
DOI: 10.1021/acsami.2c05572
Google Scholar
[33]
Y. Chen et al., "Cyclodextrin incorporation into covalent organic frameworks enables extensive liquid and gas chromatographic enantioseparations," J. Am. Chem. Soc., vol. 145, no. 34, p.18956–18967, 2023.
DOI: 10.1021/jacs.3c05973
Google Scholar
[34]
E. Issaka, M. Adams, J. Baffoe, E. Danso-Boateng, L. Melville, and F. Adnan, "Covalent organic frameworks: A review of synthesis methods, properties and applications for per- and polyfluoroalkyl substances removal," Clean Technol. Environ. Policy, vol. 27, no. 2, p.833–860, 2024.
DOI: 10.1007/s10098-024-03102-8
Google Scholar
[35]
M. Asif, S. Kim, T. Nguyen, J. Mahmood, and C. Yavuz, "Covalent organic framework membranes and water treatment," J. Am. Chem. Soc., vol. 146, no. 6, p.3567–3584, 2024.
DOI: 10.1021/jacs.3c10832
Google Scholar
[36]
Y. Hu et al., "Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity," J. Am. Chem. Soc., vol. 141, no. 18, p.7518–7525, 2019.
DOI: 10.1021/jacs.9b02448
Google Scholar
[37]
J. Meng, M. Yin, K. Guo, X. Zhou, and Z. Xue, "In situ polymerization in COF boosts Li-ion conduction in solid polymer electrolytes for Li metal batteries," Nano Micro Lett., vol. 17, no. 1, 2025.
DOI: 10.1007/s40820-025-01768-3
Google Scholar
[38]
A. Esrafili, A. Wagner, S. Inamdar, and A. Acharya, "Covalent organic frameworks for biomedical applications," Adv. Healthcare Mater., vol. 10, no. 6, Art. no. 2002090, 2021.
DOI: 10.1002/adhm.202002090
Google Scholar
[39]
Y. Chen et al., "Nanochannels of covalent organic frameworks for chiral selective transmembrane transport of amino acids," J. Am. Chem. Soc., vol. 141, no. 51, p.20187–20197, 2019.
DOI: 10.1021/jacs.9b10007
Google Scholar
[40]
J. Guo and D. Jiang, "Covalent organic frameworks for heterogeneous catalysis: Principle, current status, and challenges," ACS Cent. Sci., vol. 6, no. 6, p.869–879, 2020.
DOI: 10.1021/acscentsci.0c00463
Google Scholar