Cyclodextrin Covalent-Organic Frameworks: Bridging Host–Guest Chemistry and Porous Materials for Diverse Applications

Article Preview

Abstract:

Cyclodextrin Covalent-Organic Frameworks (CD-COFs) represent a distinctive class of porous crystalline materials that combines the structural order and tunable porosity of covalent-organic frameworks with the host–guest recognition and chiral selectivity of cyclodextrins. This review presents an analysis of recent progress in CD-COF research with emphasis on applications already demonstrated in the literature. CD-COFs show strong performance as highly selective stationary phases for chromatographic separations, enabling resolution of positional isomers and chiral enantiomers through inclusion complexation within ordered cavities supported by a high-surface-area framework. Framework architecture also enables rapid and selective adsorption of micropollutants, perfluorinated compounds, and other persistent contaminants, pointing to use in sustainable water treatment. Studies further report roles in energy and environmental technologies that include solid-state lithium-ion conduction, carbon capture, functional membranes for antibacterial activity, and enantioselective separation. Knowledge gaps persist in scalable and environmentally friendly synthesis, broader coverage of underexplored application spaces, and the translation of host–guest design rules into predictive structure–property relationships. Continued progress positions CD-COFs as a versatile platform for next-generation functional materials that address challenges in separation science, energy storage, and environmental remediation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-57

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Wang, X. Wang, Q. Sun, R. Li, and Y. Ji, "A covalent organic framework based on 1,3,5-tris(4-aminophenyl)benzene and terephthalaldehyde for solid-phase extraction of bisphenols," Microchim. Acta, vol. 188, no. 11, Art. no. 367, 2021.

DOI: 10.1007/s00604-021-04925-8

Google Scholar

[2] J. Wu, L. Li, L. Cao, X. Liu, R. Li, and Y. Ji, "Chiral covalent organic frameworks with dual binding sites for high-performance enantioseparation," ACS Appl. Mater. Interfaces, vol. 15, no. 22, p.27214–27222, 2023.

DOI: 10.1021/acsami.3c04066

Google Scholar

[3] B. Tang, W. Wang, H. Hou, Y. Liu, Z. Liu, L. Geng, L. Sun, and A. Luo, "A novel covalent organic framework for the efficient extraction of sulfonamides from meat samples," Chin. Chem. Lett., vol. 33, no. 2, p.898–902, 2022.

DOI: 10.1016/j.cclet.2021.06.089

Google Scholar

[4] Y. Yan, X. Cai, S. Cheng, X. Xie, Y. Lan, J. Wu, J. Fan, S. Zheng, S. Cai, and W. Zhang, "Covalent organic frameworks for separation and analysis of complex samples," Sep. Sci. Plus, vol. 5, no. 12, p.671–681, 2022.

DOI: 10.1002/sscp.202200104

Google Scholar

[5] N. Y. Xu, P. Guo, J. K. Chen, J. H. Zhang, B. J. Wang, S. M. Xie, and L. M. Yuan, "Chiral covalent organic frameworks for high-performance liquid chromatography enantioseparation," Talanta, vol. 235, Art. no. 122754, 2021.

DOI: 10.1016/j.talanta.2021.122754

Google Scholar

[6] Y. Wang, S. Q. Zhuo, J. Hou, W. Li, and Y. Ji, "Ionic liquid-modified covalent organic frameworks for the selective extraction of phenoxy acid herbicides," ACS Appl. Mater. Interfaces, vol. 11, no. 51, p.48363–48369, 2019.

DOI: 10.1021/acsami.9b16720

Google Scholar

[7] M. Ma, Y. Du, L. Zhang, J. Gan, and J. Yang, "Core-shell structured covalent organic frameworks for the extraction of benzoylurea insecticides," Microchim. Acta, vol. 187, no. 7, Art. no. 360, 2020.

DOI: 10.1007/s00604-020-04360-1

Google Scholar

[8] X. Wang, J. Wu, X. Liu, X. Qiu, L. Cao, and Y. Ji, "Enhanced chiral recognition abilities of cyclodextrin covalent organic frameworks via chiral or achiral functional modification," ACS Appl. Mater. Interfaces, vol. 14, no. 22, p.25928–25936, 2022.

DOI: 10.1021/acsami.2c05572

Google Scholar

[9] H. Huo, J. Guan, Z. Huang, K. Long, D. Zhang, S. Shi, and F. Yan, "Covalent organic framework-modified capillary columns for the separation of isomers," J. Sep. Sci., vol. 46, no. 14, Art. no. 2300117, 2023.

DOI: 10.1002/jssc.202300117

Google Scholar

[10] L. Gu, J. Guan, Z. Huang, H. Huo, S. Shi, D. Zhang, and F. Yan, "Covalent organic frameworks as stationary phases for capillary electrochromatography," Electrophoresis, vol. 43, no. 13–14, p.1446–1454, 2022.

DOI: 10.1002/elps.202200029

Google Scholar

[11] H. Luo, X. Bai, H. Liu, X. Qiu, J. Chen, and Y. Ji, "Covalent organic frameworks based solid phase extraction for the determination of trace contaminants," Sep. Purif. Technol., vol. 285, Art. no. 120336, 2022.

DOI: 10.1016/j.seppur.2021.120336

Google Scholar

[12] B. Wang, X. Zhang, B. Wang, Q. Feng, Y. Luo, W. Wang, C.-F. Ding, and Y. Yan, "Magnetic covalent organic frameworks for the extraction of fluoroquinolones," Microchim. Acta, vol. 190, no. 10, Art. no. 393, 2023.

DOI: 10.1007/s00604-023-05952-3

Google Scholar

[13] S. Zhuo, X. Wang, L. Li, S. Yang, and Y. Ji, "Chiral covalent organic frameworks for high-resolution gas chromatographic separation," ACS Appl. Mater. Interfaces, vol. 13, no. 26, p.31059–31065, 2021.

DOI: 10.1021/acsami.1c09238

Google Scholar

[14] R. Q. Wang, X. B. Wei, and Y. Q. Feng, "Facile synthesis of covalent organic frameworks for the efficient extraction of organic pollutants," Chem. Eur. J., vol. 24, no. 43, p.10979–10983, 2018.

DOI: 10.1002/chem.201802564

Google Scholar

[15] W. Wang, H. Shao, S. Zhou, D. Zhu, X. Jiang, G. Yu, and S. Deng, "Covalent organic frameworks for separation and purification: A review," ACS Appl. Mater. Interfaces, vol. 13, no. 41, p.48700–48708, 2021.

DOI: 10.1021/acsami.1c14043

Google Scholar

[16] C. Li, C. Chen, J. Zhao, M. Tan, S. Zhai, Y. Wei, L. Wang, and T. Dai, "Covalent organic frameworks for drug delivery and cancer therapy," ACS Biomater. Sci. Eng., vol. 7, no. 8, p.3898–3907, 2021.

DOI: 10.1021/acsbiomaterials.1c00648

Google Scholar

[17] Y. Zhang, J. Duan, D. Ma, P. Li, S. Li, H. Li, J. Zhou, X. Ma, X. Feng, and B. Wang, "Three-dimensional covalent organic frameworks with hierarchical porosity," Angew. Chem., vol. 129, no. 51, p.16531–16535, 2017.

DOI: 10.1002/ange.201710633

Google Scholar

[18] Z. Mu et al., "Hierarchical microtubular covalent organic frameworks achieved by COF-to-COF transformation," Angew. Chem., vol. 62, no. 17, Art. no. e202300373, 2023.

DOI: 10.1002/anie.202300373

Google Scholar

[19] C. Kappe, "Controlled microwave heating in modern organic synthesis," Angew. Chem. Int. Ed., vol. 43, no. 46, p.6250–6284, 2004.

DOI: 10.1002/anie.200400655

Google Scholar

[20] V. Safarifard and A. Morsali, "Mechanochemical solid state transformations from a 3D lead(II) chloride triazole carboxylate coordination polymer to its bromide/thiocyanate analogs via anion replacements," CrystEngComm, vol. 14, no. 16, p.5130–5146, 2012.

DOI: 10.1039/c2ce25277e

Google Scholar

[21] H. Jiang and Q. Xu, "Porous metal-organic frameworks as platforms for functional applications," Chem. Commun., vol. 47, no. 12, p.3351–3370, 2011.

DOI: 10.1039/c0cc05419d

Google Scholar

[22] N. Kavhiza, M. Zargar, S. Prikhodko, and E. Pakina, "Comparison of three commercial DNA extraction kits for the enhancement of PCR assay sensitivity for Xanthomonas euvesicatoria pv. allii," J. Appl. Microbiol., vol. 132, no. 2, p.1221–1226, 2021.

DOI: 10.1111/jam.15280

Google Scholar

[23] D. Ng, Z. Yang, and M. García-Garibay, "Total synthesis of (±)-herbertenolide by stereospecific formation of vicinal quaternary centers in a crystalline ketone," Org. Lett., vol. 6, no. 4, p.645–647, 2004.

DOI: 10.1021/ol0499250

Google Scholar

[24] Y. Peng et al., "Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene," Angew. Chem., vol. 130, no. 34, p.11137–11141, 2018.

DOI: 10.1002/ange.201806732

Google Scholar

[25] J. Lee, O. Farha, J. Roberts, K. Scheidt, S. Nguyen, and J. Hupp, "Metal-organic framework materials as catalysts," Chem. Soc. Rev., vol. 38, no. 5, p.1450–1459, 2009.

DOI: 10.1039/b807080f

Google Scholar

[26] K. Martina, G. Cravotto, and R. Varma, "Impact of microwaves on organic synthesis and strategies toward flow processes and scaling up," J. Org. Chem., vol. 86, no. 20, p.13857–13872, 2021.

DOI: 10.1021/acs.joc.1c00865

Google Scholar

[27] C. Xiao and Y. Xie, "The expanding energy prospects of metal-organic frameworks," Joule, vol. 1, no. 1, p.25–28, 2017.

DOI: 10.1016/j.joule.2017.08.014

Google Scholar

[28] W. Mai et al., "Water-dispersible, responsive, and carbonizable hairy microporous polymeric nanospheres," J. Am. Chem. Soc., vol. 137, no. 41, p.13256–13259, 2015.

DOI: 10.1021/jacs.5b08978

Google Scholar

[29] S. Mitchenko, T. Krasnyakova, R. Mitchenko, and A. Korduban, "Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4 salt," J. Mol. Catal. A Chem., vol. 275, no. 1–2, p.101–108, 2007.

DOI: 10.1016/j.molcata.2007.05.036

Google Scholar

[30] C. Rodríguez-Carrillo, M. Benítez, J. El Haskouri, P. Amorós, and J. V. Ros-Lis, "Novel microwave-assisted synthesis of COFs: 2020 to 2022," Molecules, vol. 28, no. 7, Art. no. 3112, 2023.

DOI: 10.3390/molecules28073112

Google Scholar

[31] H. Vardhan, G. Rummer, A. Deng, and S. Ma, "Large-scale synthesis of covalent organic frameworks: Challenges and opportunities," Membranes, vol. 13, no. 8, Art. no. 696, 2023.

DOI: 10.3390/membranes13080696

Google Scholar

[32] X. Wang, J. Wu, X. Liu, X. Qiu, L. Cao, and Y. Ji, "Enhanced chiral recognition abilities of cyclodextrin covalent organic frameworks via chiral or achiral functional modification," ACS Appl. Mater. Interfaces, vol. 14, no. 22, p.25928–25936, 2022.

DOI: 10.1021/acsami.2c05572

Google Scholar

[33] Y. Chen et al., "Cyclodextrin incorporation into covalent organic frameworks enables extensive liquid and gas chromatographic enantioseparations," J. Am. Chem. Soc., vol. 145, no. 34, p.18956–18967, 2023.

DOI: 10.1021/jacs.3c05973

Google Scholar

[34] E. Issaka, M. Adams, J. Baffoe, E. Danso-Boateng, L. Melville, and F. Adnan, "Covalent organic frameworks: A review of synthesis methods, properties and applications for per- and polyfluoroalkyl substances removal," Clean Technol. Environ. Policy, vol. 27, no. 2, p.833–860, 2024.

DOI: 10.1007/s10098-024-03102-8

Google Scholar

[35] M. Asif, S. Kim, T. Nguyen, J. Mahmood, and C. Yavuz, "Covalent organic framework membranes and water treatment," J. Am. Chem. Soc., vol. 146, no. 6, p.3567–3584, 2024.

DOI: 10.1021/jacs.3c10832

Google Scholar

[36] Y. Hu et al., "Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity," J. Am. Chem. Soc., vol. 141, no. 18, p.7518–7525, 2019.

DOI: 10.1021/jacs.9b02448

Google Scholar

[37] J. Meng, M. Yin, K. Guo, X. Zhou, and Z. Xue, "In situ polymerization in COF boosts Li-ion conduction in solid polymer electrolytes for Li metal batteries," Nano Micro Lett., vol. 17, no. 1, 2025.

DOI: 10.1007/s40820-025-01768-3

Google Scholar

[38] A. Esrafili, A. Wagner, S. Inamdar, and A. Acharya, "Covalent organic frameworks for biomedical applications," Adv. Healthcare Mater., vol. 10, no. 6, Art. no. 2002090, 2021.

DOI: 10.1002/adhm.202002090

Google Scholar

[39] Y. Chen et al., "Nanochannels of covalent organic frameworks for chiral selective transmembrane transport of amino acids," J. Am. Chem. Soc., vol. 141, no. 51, p.20187–20197, 2019.

DOI: 10.1021/jacs.9b10007

Google Scholar

[40] J. Guo and D. Jiang, "Covalent organic frameworks for heterogeneous catalysis: Principle, current status, and challenges," ACS Cent. Sci., vol. 6, no. 6, p.869–879, 2020.

DOI: 10.1021/acscentsci.0c00463

Google Scholar