PKS-Derived Porous Carbon/Epoxy Composites for EMI Shielding

Article Preview

Abstract:

Nowadays, many individuals utilize the 5G network, which can give detrimental effects due to electromagnetic interference (EMI). EMI may harm not only high-tech electronic devices but also human health. In this study, the porous carbon was synthesized from palm kernel shell (PKS) via hydrothermal treatment at varying temperatures (160 °C, 180 °C, and 200 °C) followed by carbonization, and comprehensively characterized to understand its structural, chemical, and electromagnetic properties. X-ray diffraction (XRD) revealed broad (002) and (100) peaks across all samples, indicating amorphous graphitic carbon with limited crystallinity. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of O–H, C–H, and C=C functional group. As the synthesis temperature increased, aromatic and graphitic characteristics became more pronounced, with 180 °C exhibiting a significant rise in C–H peak intensity. This suggests that 180 °C is an optimal carbonization temperature, promoting the formation or preservation of stable aliphatic structures without excessive degradation. Surface area analysis using the BET method showed that the sample treated at 180 °C exhibited the highest surface area (547.4 m²/g), suggesting optimal porosity formation. Scanning electron microscopy (SEM) supported this finding, showing a fragmented and open morphology at 180 °C, in contrast to denser, spherical agglomerates observed at 200 °C. Due to its characteristics, the 180 °C sample was selected for electromagnetic characterization. S-parameter measurements at X-band frequency for epoxy composites filled with porous carbon revealed that increasing filler content led to reduced transmission coefficient, indicating enhanced electromagnetic wave attenuation. These improvements are attributed to increased dielectric losses and interfacial polarization facilitated by the highly porous carbon network. In conclusion, the study highlights the significance of hydrothermal synthesis temperature in tuning the structure and electromagnetic performance of biomass-derived porous carbon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-85

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Naderi, & F. Ebrahimi. (2021). Fracture Surface and Mechanical Properties of Epoxy Composites (p.259)

DOI: 10.1002/9783527824083.ch10

Google Scholar

[2] H. Alshahrani, P. Gurusamy, A. K. Gujba, & A. P. V. Rethnam. (2022). Effect of palmyra sprout fiber and biosilica on mechanical, wear, thermal and hydrophobic behavior of epoxy resin composite. Journal of Industrial Textiles, 52

DOI: 10.1177/15280837221137382

Google Scholar

[3] D. Krajewski, M. Oleksy, R. Oliwa, K. Bulanda, K. Czech, D. Mazur, & G. Masłowski. (2022). Methods for enhancing the electrical properties of epoxy matrix composites. Energies, 15(13), 4562

DOI: 10.3390/en15134562

Google Scholar

[4] W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao, M. Yuan, H. Bai, & C. Gao. (2019). High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon, 157, 570–578

DOI: 10.1016/j.carbon.2019.10.051

Google Scholar

[5] H. He, F. Gao, & K. Li. (2013). Effect of epoxy resin properties on the mechanical properties of carbon fiber/epoxy resin composites. International Journal of Materials Research, 104(9), 899

DOI: 10.3139/146.110937

Google Scholar

[6] W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao, M. Yuan, H. Bai, & C. Gao. (2019). High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon, 157, 570

DOI: 10.1016/j.carbon.2019.10.051

Google Scholar

[7] Yu. V. Kornev, Н. А. Семенов, А. Н. Власов, & H. H. Valiev. (2021). Reinforcing effects in elastomeric composites filled with particles of mineral fillers based on silicon dioxide and carbon. Journal of Physics Conference Series, 1942(1), 12031

DOI: 10.1088/1742-6596/1942/1/012031

Google Scholar

[8] S. Sun, L. Wang, & B. Xue. (2022). Preparation and properties of epoxy/multiwalled carbon nanotube nanocomposite foams with an alternating layer structure. ACS Omega, 7(37), 33010

DOI: 10.1021/acsomega.2c02710

Google Scholar

[9] G. Foteinidis, K. Tsirka, L. Tzounis, D. Baltzis, & A. S. Paipetis. (2019). The role of synergies of MWCNTs and carbon black in the enhancement of the electrical and mechanical response of modified epoxy resins. Applied Sciences, 9(18), 3757

DOI: 10.3390/app9183757

Google Scholar

[10] H. Duan, H. Zhu, J. Yang, J. Gao, Y. Yang, L. Xu, G. Zhao, & Y. Liu. (2018). Effect of carbon nanofiller dimension on synergistic EMI shielding network of epoxy/metal conductive foams. Composites Part A: Applied Science and Manufacturing, 118, 41

DOI: 10.1016/j.compositesa.2018.12.016

Google Scholar

[11] M. L. Yeboah, X. Li, & S. Zhou. (2020). Facile fabrication of biochar from palm kernel shell waste and its novel application to magnesium-based materials for hydrogen storage. Materials, 13(3), 625

DOI: 10.3390/ma13030625

Google Scholar

[12] T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baran, & H. Ratajczak. (2004). IR-analysis of H-bonded H2O on the pure TiO2 surface. Journal of Molecular Structure, 700, 175

DOI: 10.1016/j.molstruc.2003.12.057

Google Scholar

[13] R. Bidari, A. A. Abdillah, R. A. B. Ponce, & A. L. Charles. (2023). Characterization of biodegradable films made from taro peel (Colocasia esculenta) starch. Polymers, 15(2), 338

DOI: 10.3390/polym15020338

Google Scholar

[14] D. Bakarić, & G. Baranović. (2019). The conformational equilibrium and vibrational properties of chalcone. Journal of Molecular Structure, 1196, 429

DOI: 10.1016/j.molstruc.2019.06.098

Google Scholar

[15] G. A. M. de Jesus, M. Â. S. de Castro, P. R. Souza, J. P. Monteiro, R. M. Sabino, S. S. Sablani, A. F. Martins, & E. G. Bonafé. (2025). Antioxidant, UV-blocking, and biodegradable pectin films containing selenium nanoparticles for sustainable food packaging. Food Hydrocolloids, 111449

DOI: 10.1016/j.foodhyd.2025.111449

Google Scholar

[16] N. F. T. Arifin, N. Yusof, N. A. H. M. Nordin, J. Jaafar, A. F. Ismail, F. Aziz, & W. N. W. Salleh. (2021). Rice husk derived graphene-like material: Activation with phosphoric acid in the absence of inert gas for hydrogen gas storage. International Journal of Hydrogen Energy, 46(60), 31084

DOI: 10.1016/j.ijhydene.2021.02.051

Google Scholar

[17] S. Dantas, K. C. Struckhoff, M. Thommes, & A. V. Neimark. (2020). Pore size characterization of micro-mesoporous carbons using CO2 adsorption. Carbon, 173, 842

DOI: 10.1016/j.carbon.2020.11.059

Google Scholar