Field Emission from ZnO by Morphological and Electronic Design

Article Preview

Abstract:

In this paper, field emission from ZnO was studied by morphological and electronic design. By fabricating ZnO into nanopin structure with sharp tip, we can obtain low threshold and high emission current density. By doping ZnO with gallium, we can lift up the Fermi level and increase the conductivity to enhance the field emission. The fabrication of nanostructures and analysis of field emission will be discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

813-816

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Buldum, and J. P. Lu, Phys. Rev. Lett. 91(2003) 236801-1.

Google Scholar

[2] W. A. de Heer, A. Chatelain and D. Uqarte, Science, 270(1995) 1179.

Google Scholar

[3] X. W. Sun and H. S. Kwok, J. Appl. Phys. 86(1999) 408.

Google Scholar

[4] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13(2001) 113.

Google Scholar

[5] C. X. Xu, X. W. Sun, Z. L. Dong and M. B. Yu, Appl. Phys. Lett. 85(2004) 3878.

Google Scholar

[6] C. X. Xu, X. W. Sun, B. J. Chen, and Z. L. Dong, Appl. Phys. Lett. 86(2005)011118.

Google Scholar

[7] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 80(2002) 4232.

Google Scholar

[8] L. Vayssieres, K. Keis, S. -E. Lindquist, and A. Hagfeldt, J. Phy. Chem. B. 105(2001) 3350.

Google Scholar

[9] Y. Li, G. W. Meng, L.D. Zhang, and F. Phillipp, Appl. Phys. Lett., 76(2000) (2011).

Google Scholar

[10] L. Dong, J. Jiao, D. W. Tuggle, J. M. Petty, S. A. Elliff, and M. Coulter, Appl. Phys. Lett., 82(2003) 1096.

DOI: 10.1063/1.1554477

Google Scholar

[11] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. and Lee, Appl. Phys. Lett., 81(2002) 3648.

Google Scholar

[12] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, Appl. Phys. Lett., 83 (2003) 144.

Google Scholar

[13] Q. Wan, K. Yu, T. H. Wang, and C. L. Lin, Appl. Phys. Lett., 83(2003) 2253.

Google Scholar

[14] S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, and J. T. Fourkas, Appl. Phys. Lett., 83(2003)4821.

DOI: 10.1063/1.1631735

Google Scholar

[15] C. X. Xu, and X. W. Sun, Appl. Phys. Lett., 83(2003) 3806.

Google Scholar

[16] C. X. Xu, and X. W. Sun, Int. J. Nanotech. 1(2004) 452.

Google Scholar

[17] C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett. 84(2004) 1540.

Google Scholar

[18] G. N. Fursey, and D. V. Glazanov, J. Vac. Sci. Tech. B, 16 (1998) 910.

Google Scholar

[19] S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, (1981) John Wiley & Sons, Singapore. p.17.

Google Scholar

[20] W. Zhu, Vacuum Microelectronics, (2001) John Wiley and Sons Inc. p.247.

Google Scholar