Effects of CeO2 on the Piezoelectric Properties of PSN-PMN-PZT Composition under Various Alternating Electric Fields

Abstract:

Article Preview

0.03Pb(Sb0.5Nb0.5)O3-0.03Pb(Mn1/3Nb2/3)O3-(0.94-x)PbTiO3-xPbZrO3 ceramics doped with CeO2 were synthesized by conventional bulk ceramic processing technique. Phases analysis, microstructures and piezoelectric properties were investigated as a function of CeO2 contents (0.03, 0.05, 0.1 0.3, 0.5 and 0.7wt%). Microstructures and phases information were characterized using a scanning electron microscope (SEM) and an X-ray diffractometer (XRD). Relative dielectric constant (K33 T) and coupling factor (kp) were obtained from the resonance measurement method. Both K33 T and kp were shown to reach to the maximum at 0.1wt% CeO2. In order to evaluate the stability of resonance frequency and effective electromechanical coupling factor (Keff) as a function of CeO2 addition under strong electric field, the variation of resonance and anti-resonance frequency were also measured using a high voltage frequency response analyzer(FRA5096) under various alternating electric fields from 10V/mm to 80V/mm. It was shown that effective electromechanical coupling factor was increased by increasing the CeO2 additions.

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Edited by:

Byung Tae Ahn, Hyeongtag Jeon, Bo Young Hur, Kibae Kim and Jong Wan Park

Pages:

203-206

DOI:

10.4028/www.scientific.net/SSP.124-126.203

Citation:

M. S. Yoon et al., "Effects of CeO2 on the Piezoelectric Properties of PSN-PMN-PZT Composition under Various Alternating Electric Fields", Solid State Phenomena, Vols. 124-126, pp. 203-206, 2007

Online since:

June 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.