Detection of Toxic Organophosphate Nerve Agents Using DBR Porous Silicon Chip

Article Preview

Abstract:

The efficient detection method based on nanostructured photonic DBR PSi has been developed for DMMP, which is a simulant for G-type nerve agents. The manufactured DBR PSi chip exhibits a sharp photonic band gap at 520 nm. The detection method involves the shift of DBR peak in reflectivity spectra under the exposure of vapors of analyte. Rapid detection has been achieved in few seconds, in situ, and observed by the red-shift of DBR peak resulted from the increase of refractive indices in DBR PSi. When DBR PSi chip is exposed to DMMP, TEP, and DEEP-saturated air, DBR peak in reflectivity is red shifted by 10 nm, 25 nm, and 10 nm, respectively. Real-time detection for the nerve gases indicates that the measurement is reversible. Detection limit of DMMP (1.5 ppm) using DBR PSi is 8.8 mg/m3 for 1 min.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

491-494

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Sohn, S. Letant , M. J. Sailor and W. C. Trogler: J. Am. Chem. Soc. Vol. 122 (2000), p.5399.

Google Scholar

[2] C. Pacholski, M. Sartor, M. J. Sailor, F. Cunnin and G. M. Miskelly, J. Am. Chem. Soc. Vol. 127 (2005), p.11636.

Google Scholar

[3] L. T. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock and P. A. Snow, Phys. Status Solidi A. Vol. 128 (2000), p.521.

DOI: 10.1002/1521-396x(200011)182:1<521::aid-pssa521>3.0.co;2-7

Google Scholar

[4] V. Lehmann, R. Stengl, H. Reisinger, R. Detemple and W. Theiss, Appl. Phys. Lett. Vol. 78 (2001), p.589.

DOI: 10.1063/1.1334943

Google Scholar

[5] J. Dorvee and M. J. Sailor, Phys. Stat. Sol. Vol. 202 ( 2005), p.1619.

Google Scholar

[6] M. S. Nieuwenhuizen and J. L. N. Harteveld, Sens. Actuators B. Vol. B40 (1997), p.167.

Google Scholar

[7] D. Williams and G. Pappas, Field Anal. Chem. Chem. Technol. Vol. 3 (1999), p.45.

Google Scholar

[8] K. E. LeJeune, J. R. Wild and A. J. Russell, Nature. Vol. 395 (1998), p.27.

Google Scholar

[9] E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, Science. Vol. 307 (2005), p. (1942).

Google Scholar

[10] N. Taranenko, J. -P. Alarie, D. L. Stokes and T. Vo-Dinh, J. Raman Spectrosc. Vol. 27 (1996), p.379.

Google Scholar

[11] A. R. Hopkins and N. S. Lewis, Anal. Chem. Vol. 73 (2001), p.884.

Google Scholar

[12] S. E. Letant, S. R. Kane, B. R. Hart, M. Z. Hadi, T. -C. Cheng, V. K. Rastogi and J. G. Reynolds, Chem. Commun., Issue 7 (2005), p.851.

Google Scholar