Rate Equation Modeling, Ab Initio Calculation, and High Sensitive FTIR Investigations of the Early Stages of Oxide Precipitation in Vacancy-Rich CZ Silicon

Article Preview

Abstract:

The results of highly sensitive FTIR investigation, ab initio calculations and rate equation modeling of the early stages of oxide precipitation are compared. The attachment of interstitial oxygen to VOn is energetically more favorable than the attachment to On for n  6. For higher n the energy gain is comparable. The point defect species which were detected by highly sensitive FTIR in high oxygen Czochralski silicon wafers are O1, O2, O3, and VO4. Rate equation modeling for I, V, On and VOn with n = (1..4) also yields O1, O2, O3 to appear with decreasing concentration and VO4 as that one of the VOn species which would appear in the highest concentration after RTA.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

211-216

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Falster, V. V. Voronkov, and F. Quast, phys. stat. sol. (b), 222 (2000), p.219.

Google Scholar

[2] G. Kissinger, J. Dabrowski, A. Sattler, C. Seuring, T. Müller, H. Richter, and W. von Ammon, J. Electrochem. Soc., 154 (2007), p. H454.

DOI: 10.1149/1.2717492

Google Scholar

[3] G. Kissinger, D. Kot, J. Dabrowski, V. Akhmetov, A. Sattler, and W. von Ammon, in High Purity Silicon X, C. Claeys, R. Falster, M. Watanabe, and P. Stallhofer, Editors, in: ECS Transactions Vol. 16 No. 8 (2008), p.97.

DOI: 10.1149/1.2980296

Google Scholar

[4] J. C. Mikkelsen Jr., Mater. Res. Soc. Symp. Proc. 59 (1986), p.19.

Google Scholar

[5] D. Aberg, B. G. Svensson, T. Hallberg, J. L. Lindström, Phys. Rev. B 58 (1998)-I, p.12944.

Google Scholar

[6] T. A. Frewen, S. S. Kapur, W. Häckl, W. Von Ammon, T. Sinno, J. Cryst. Growth 279 (2005), p.258.

Google Scholar

[7] V. V. Voronkov and R. Falster, Mat. Sci. in Semicond. Processing 5 (2003), p.387.

Google Scholar

[8] D. Kot, T. Mchedlidze, G. Kissinger, and W. Von Ammon, to be published.

Google Scholar

[9] V. Akhmetov, G. Kissinger, and W. Von Ammon, Appl. Phys. Lett. 94 (2009), p.092105.

Google Scholar

[10] L.I. Murin, J. L. Lindström, B. G. Svensson, V.P. Markevich, A.R. Peaker, C. A. Londos, Proceedings GADEST'05, Giens, September 25-30, ed. by B. Pichaud, A. Claverie, D. Alquier, H. Richter, M. Kittler, in:, Solid State Phenomena, Vols. 108-109 (2005).

DOI: 10.4028/www.scientific.net/ssp.108-109.267

Google Scholar

[11] L. I. Murin, V. P. Markevich, M. Suezawa, J. L. Lindström, M. Kleverman and T. Hallberg, Physica B: Condensed Matter, Vols. 302-303 (2001), p.180.

DOI: 10.1016/s0921-4526(01)00425-2

Google Scholar

[12] L.I. Murin, V.P. Markevich, in: R. Jones (Ed. ), Early Stages of Oxygen Precipitation in Silicon, High Technology, Vol. 17, NATO ASI Series, 3, Kluwer, Dordrecht, 1996, pp.329-336.

Google Scholar

[13] J. W. Corbett, G. D. Watkins, and R. S. McDonald, Phys. Rev. 135 (1964), p. A1381.

Google Scholar

[14] H. J. Stein, in: H. J. von Bardeleben (Ed. ), Defects in Semiconductors 14, Materials Science Forum, Vol. 10-12 (1986), pp.935-940.

Google Scholar

[15] C. A. Londos and L. G. Fytros, J. Appl. Phys., 89 (2) (2001), pp.928-932.

Google Scholar

[16] R. S. Leigh and B. Szigeti, Phys. Rev. Lett. 19 (1967), p.56.

Google Scholar