Feedback Effect on the Self-Organized Nanostructures Formation on Silicon upon Femtosecond Laser Ablation

Article Preview

Abstract:

The role of multi-pulse feedback in self-organized nanostructure (ripples) formation on silicon surface upon femtosecond laser ablation is investigated. For irradiation at constant intensity and pulse repetition rate, the previously postulated feedback effect of accumulated dose with in¬creasing number of pulses is confirmed and investigated in detail: both the modified surface area as well as the complexity and feature size of generated nanostructures increase with accumulated dose. More interestingly, at constant total incident dose (number of pulses times pulse energy) accumu¬lation and feedback depend strongly on temporal pulse separation. The feedback becomes increas¬ingly weaker with increasing time intervals between successive pulses, involving times up to one second and more before individual pulses act independently. In a first attempt to model this long-lived coupling, we find that conduction band electrons, produced by the preceding laser pulse, can provide, indeed, such feedback by facilitating coupling of subsequent pulses for substantial delays. However, the achieved time span of about a millisecond is still significantly shorter than observed experimentally.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

535-540

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. -H. Her, R.J. Finlay, C. Wu, S. Deliwata, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998).

Google Scholar

[2] J. Krüger and W. Kautek,. Laser Physics 9 (1999).

Google Scholar

[3] T. Tomita, K. Kinoshita, S. Matsuo, S. Hashimoto, Appl. Phys. Lett 90, 153115 (2007. ).

Google Scholar

[4] T.H.R. Crawford, J. Yamanaka, G.A. Botton, H.K. Haugen, J. Appl. Phys. 103, 053104 (2008).

Google Scholar

[5] A. Borowiec, H.K. Haugen, Appl. Phys. Lett., 82 (2003), 4462.

Google Scholar

[6] F. Costache, S. Kouteva-Arguirova, J. Reif, Appl. Phys. A 79, 1429 (2004); O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Appl. Surf. Sci 252, 4702 (2006); O. Varlamova, F. Costache, M. Ratzke, J. Reif, Appl. Surf. Sci. 253, 7932 (2007).

DOI: 10.1016/j.apsusc.2007.02.067

Google Scholar

[7] M. Bestehorn, K. Neuffer, Phys. Rev. Lett. 87, (2001).

Google Scholar

[8] W. Kautek, P. Rudolph, G. Daminelli, J. Krüger, Appl. Phys. A 81, 65-70 (2005).

Google Scholar

[9] T. Tomita; K. Kinoshita ; S. Matsuo ; S. Hashimoto, Jpn. J. Appl. Phys 45, (2006).

Google Scholar

[10] G. Miyaji, K. Miyazaki, Appl. Phys. Lett 91, 123102 (2007).

Google Scholar

[11] J. Reif, F. Costache, M. Bestehorn, in Recent Advances in Laser, Processing of Materials, ed. by J. Perrière, E. Millon, E. Fogarassy (Elsevier, Amsterdam, 2006), Chap. 9.

Google Scholar

[12] J. Reif, F. Costache, O. Varlamova, G. Jia, M. Ratzke, Phys. Status Solidi C 6, 681-686 (2009).

DOI: 10.1002/pssc.200880719

Google Scholar

[13] A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. von der Linde, J. Appl. Phys 85, 3301 (1999).

DOI: 10.1063/1.369675

Google Scholar

[14] J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19-25 (2002).

DOI: 10.1007/s003390100893

Google Scholar

[15] M. Couillard, A. Borowiec, H.K. Haugen, J.S. Preston, J. Appl. Phys. 101, 033519 (2007).

Google Scholar

[16] F. Costache, S. Eckert, J. Reif, Appl. Surf. Sci. 252, 4416 (2006); J. Reif, F. Costache S. Eckert, J. Phys. Conf. Ser., 59 1-4, (2007).

DOI: 10.1016/j.apsusc.2005.07.098

Google Scholar

[17] B. Rethfeld, K. Sokolowski-Tinten, d. von der Linde, S. Anisimov, Appl. Phys. A 79, 767- 769 (2004).

DOI: 10.1007/s00339-004-2805-9

Google Scholar

[18] D.P. Korfiatis, K. -A. Th. Thoma, J.C. Vardaxoglou, J. Phys. D: Appl. Phys. 40, 6803 (2007).

Google Scholar