[1]
S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Science 297 (2002) 2243.
Google Scholar
[2]
S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, J. Phys. Chem. B 104 (2000) 8920.
Google Scholar
[3]
Khaselev, J.R. Turner, Science 280 (1998) 425.
Google Scholar
[4]
S.U.M. Khan, J. Akikusa, J. Phys. Chem. B 103 (1999) 7184.
Google Scholar
[5]
S.U.M. Khan, J. Akikusa, J. Electrochem. Soc. 145 (1998) 89.
Google Scholar
[6]
J. Akikusa, S.U.M. Khan, Int. J. Hyd. Ener. 22 (1997) 875.
Google Scholar
[7]
S.A. Majumder, S.U.M. Khan. Int. J. Hyd. Ener. 19 (1994) 881.
Google Scholar
[8]
Srivastava, R.K. Karn, M. Misra. Int. J. Hyd. Ener. 25 (2000) 495.
Google Scholar
[9]
T. Bak, J. Nowotny, M. Rekas, C.C. Sorrel. Int. J. Hyd. Ener. 27 (2002) 19.
Google Scholar
[10]
Akikusa, S.U.M. Khan. Int. J. Hyd. Ener. 27 (2002) 863.
Google Scholar
[11]
J.G. Yu, H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, W.K. Ho. J. Phys. Chem. B 107 (2003) 13871.
Google Scholar
[12]
N. Serpone, E. Pelizzetti. Photocatalysis: Fundamentals and Applications; Wiley: New York, (1989).
Google Scholar
[13]
J. Nowotny, T. Back, M.K. Nowotny, R.L. Sheppard, Intl. J. Hydrogen Energy, 32 (2007) 2609.
Google Scholar
[14]
S.K. Mohaputra, V.K. Mahajan, M. Mishra, Nanotechnology, 18 (2007) 445705.
Google Scholar
[15]
C. C. Fa, L. Y. Lang, H.S. Weng, Nanotechnology, 19 (2008) 125704.
Google Scholar
[16]
C. Xu, S.U.M. Khan. Electrochem. Solid -State Lett. 10 (2007) B56.
Google Scholar
[17]
C. Xu, K Richard, L.G. McMahan, S.U.M. Khan. Electrochem. Commun. 8 (2006) 1650.
Google Scholar
[18]
S.K. Mohaputra, M. Mishra, V.K. Mahajan, J. Phys. Chem C, 111 (2007) 8677.
Google Scholar
[19]
K. Noworyta, J. Augustynski, Electrochem. Solid-State Lett. 7 (2004) E31.
Google Scholar
[20]
Y. A. Shaban, S. U. M. Khan, Int. J. Hydrogen Energy 33, (2008) 1118.
Google Scholar
[21]
Y. A. Shaban, S. U. M. Khan, Chemical Physics 339 (2007) 73.
Google Scholar
[22]
Y. A. Shaban, S. U. M. Khan, J. Solid State Electrochemistry, accepted, (2008).
Google Scholar
[23]
Y. Li, D. S. Hwang, N. H. Lee, S. J. Kim, Chem. Phys. Lett., 404 (2005) 25.
Google Scholar
[24]
Choi, A. Termin, M.R. Hoffman, J. Phys. Chem. 98 (1994) 13669.
Google Scholar
[25]
M. Anpo, Catal. Surv. Jpn. 1 (1997) 169.
Google Scholar
[26]
Choi, T. Umebayashi, M. Yoshikawa, J. Mater. Sci. 39 (2004) 1837.
Google Scholar
[27]
E. Barborini, A.M. Conti, I. Kholmanov, P. Piseri, A. Podesta, P. Milani, C. Cepek, O. Sakho, R. Macovez, M. Sancrotti, Adv. Mater. 17 (2005) 1842.
DOI: 10.1002/adma.200401169
Google Scholar
[28]
D. Noguchi, Y. Kawanata, and T. Nagatomo, J. Electrochem. Soc. 152 (2005) D124.
Google Scholar
[29]
C. Xu, R. Killmeyer, M.L. Gray, and S.U.M. Khan, Applied Catalysis B: Environmental 64 (2006) 312.
Google Scholar
[30]
H. Irie, Y. Watanabe, K. Hashimoto, Chemistry Letters 32 (2003) 72.
Google Scholar
[31]
S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed. 42 (2003) 4908.
Google Scholar
[32]
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269.
Google Scholar
[33]
Y.C. Hong, C.U. Bang, D.H. Shin, H.S. Uhm, Chem. Phys. Lett. 413 (2005) 454.
Google Scholar
[34]
T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Applied Physics Letters 81 (2002) 454.
Google Scholar
[35]
J. Tang, Y. Wu, W. McFarland, G.D. Stucky, Chem. Commun. (2004) 1670.
Google Scholar
[36]
H. Choi, E. Stathatos, D.D. Dionysiou, Applied Catalysis, B: Environmental 63 (2006) 60.
Google Scholar
[37]
G. K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Letters 5 (2005) 191.
Google Scholar
[38]
J. H. Park, S. Kim, and A.J. Bard, Nano Letters 6 (2006) 24.
Google Scholar
[39]
K. Shankar, M. Paulose, G.K. Mor, O.K. Varghese, C.A. Grimes, J. Phys. D: Appl. Phys. 38 (2005) 3543.
Google Scholar
[40]
C. Xu, Y.A. Shaban, W.B. Ingler Jr., S.U.M. Khan, ECS Transactions 3 (2006) 65.
Google Scholar
[41]
C. Xu, Y.A. Shaban, W.B. Ingler Jr., S.U.M. Khan, Sol. Energy Mat. Sol. Cells 91 (2007) 938.
Google Scholar
[42]
R. Hahn, A. Ghicov, J. Salonen, V-P. Lehto and P. Schmuki, Nanotechnology 18 (2007) 105604.
DOI: 10.1088/0957-4484/18/10/105604
Google Scholar
[43]
Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Appl. Phys. Lett. 87 (2005) 052111.
Google Scholar
[44]
W. Ren, Z. Ai, F. Jia , L. Zhang, X. Fan, Z. Zou, Applied Catalysis B: Environmental 69 (2007) 138-144.
Google Scholar
[45]
X. Nie, K. Sohlberg, Materials Research Society Symposium Proceedings on Materials and Technology for Hydrogen Economy. 801 (2004) 205.
Google Scholar
[46]
H. Wang and J.P. Lewis, J. Phys.: Condens. Matter 17 (2005) L209.
Google Scholar
[47]
H. Wang and J.P. Lewis, J. Phys.: Condens. Matter 18 (2006) 421.
Google Scholar
[48]
C. Di. Valentin, G. Pacchioni, A. Selloni, Chem. Mater. 17 (2005) 6656.
Google Scholar
[49]
C. Hägglund, M. Grätzel, T. Kansemo, Science 301 (2003) 1673b.
Google Scholar
[50]
B. Murphy, P.R. F. Barnes, L.K. Randeniya, I.C. Plumb, I. E. Grey, M.D. Horne, J.A. Glasscock, Int. J. Hydrogen Energy 31 (2006) (1999).
DOI: 10.1016/j.ijhydene.2006.01.014
Google Scholar
[51]
Information on http: /www. nrel. gov.
Google Scholar
[52]
R. D. Schaller, V. I. Klimov,. Phys. Rev. Lett. 92 (2004) 186601.
Google Scholar
[53]
R. J. Ellingson, M. C. Beard, J. C. Johnson, J. C.; Yu, P.; Micic, O. I.
Google Scholar
[54]
J. Nozik,., A. Shabaev, Al. L. Efros, . �ano Lett. 5 (2005) 865.
Google Scholar
[55]
R. D. Schaller, M. Sykora, J. M. Pietryga, V. I. Klimov, �ano Lett. 6 ( 2006) 424.
Google Scholar
[56]
J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiev, J. C. Johnson, P. Yu, O. I. Micic, R. J. Ellingson, A. J. Nozik, J. Am. Chem. Soc. 128 (2006) 3241.
Google Scholar
[57]
Shabaev, Al. L. Efros, A. J. Nozik, �ano Lett. 6 (2006) 2856.
Google Scholar
[58]
J. Nozik, Physica E. 14 (2002) 115.
Google Scholar
[59]
P. Gleckman, J. O'Gallagher, R. Winston, �ature, 339 (1989) 198.
Google Scholar