Structure-Reactivity Relationships of Anatase and Rutile TiO2 Nanocrystals Measured by In Situ Vibrational Spectroscopy

Abstract:

Article Preview

A comprehensive analysis of structural-reactivity relations on TiO2 nanocrystals is presented. Using an interplay between TEM, X-ray diffraction and vibrational spectroscopy of well-defined anatase and rutile TiO2 nanocrystals correlations between the adsorbate structure of formic acid and the corresponding photo-induced decomposition rate are described. It is demonstrated that the detailed bonding configuration determines the decomposition rate. Generalizations and implications of the findings are discussed.

Info:

Periodical:

Solid State Phenomena (Volume 162)

Edited by:

Maria K. Nowotny and Janusz Nowotny

Pages:

203-219

Citation:

L. Österlund, "Structure-Reactivity Relationships of Anatase and Rutile TiO2 Nanocrystals Measured by In Situ Vibrational Spectroscopy", Solid State Phenomena, Vol. 162, pp. 203-219, 2010

Online since:

June 2010

Authors:

Export:

Price:

$38.00

[1] M. Lazzeri, A. Vittadini, and A. Selloni, Phys. Rev. B Vol. 63 (2001), p.155409.

[2] M. Lazzeri, A. Vittadini, and A. Selloni, Phys. Rev. B Vol. 65 (2002), p.119901.

[3] U. Diebold, Surf. Sci. Rep. Vol. 48 (2003), p.53.

[4] U. Diebold, N. Ruzycki, G. S. Herman, and A. Selloni, Catal. Today Vol. 85 (2003), p.93.

[5] W. K. Li, X. Q. Gong, G. Lu, and A. Selloni, J. Phys. Chem. C Vol. 112 (2008), p.6594.

[6] L. Österlund, and A. Mattsson, in Solar Hydrogen and Nanotechnology (SPIE, 2006), p.5.

[7] L. Österlund, A. Mattsson, and P. O. Andersson, in Nanostructured Materials and Nanotechnology II, edited by S. Mathur, and M. Singh (Wiley & Sons, 2008), p.19.

[8] G. S. Herman, Z. Dohnalek, N. Ruzycki, and U. Diebold, J. Phys. Chem. B Vol. 107 (2003), p.2788.

[9] A. Tilocca, and A. Selloni, J. Phys. Chem. B Vol. 108 (2004), p.19314.

[10] A. Vittadini, A. Selloni, F. P. Rotzinger, and M. Gratzel, J. Phys. Chem. B Vol. 104 (2000), p.1300.

[11] C. -y. Wang, H. Groenzin, and M. J. Shultz, J. Am. Chem. Soc. Vol. 126 (2004), p.8094.

[12] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, Nature Vol. 453 (2008), p.638.

[13] D. Byun, Y. Jin, B. Kim, J. K. Lee, and D. Park, J. Hazard. Mater. Vol. 73 (2000), p.199.

[14] B. Kim, D. Byun, J. K. Lee, and D. Park, Jpn. J. Appl. Phys. Vol. 41 (2002), p.222.

[15] J. Jhin, J. Choi, J. H. Baek, and D. Byun, in Diffusion and Defect Data - Solid State Data B: Solid State Phenomena Vol. 2 (2007), p.1509.

[16] S. Tokita, N. Tanaka, S. Ohshio, and H. Saitoh, J. Ceram. Soc. Jpn. Vol. 111 (2003), p.433.

[17] T. Ohno, K. Sarukawa, and M. Matsumura, New J. Chem. Vol. 26 (2002), p.1167.

[18] T. Taguchi, Y. Saito, K. Sarukawa, T. Ohno, and M. Matsumura, New J. Chem. Vol. 27 (2003), p.1304.

[19] S. Kataoka, M. I. Tejedor-Tejedor, J. M. Coronado, and M. A. Anderson, J. Photochem. Photobiol. A Vol. 163 (2004), p.323.

[20] J. M. Coronado, S. Kataoka, I. Tejedor-Tejedor, and M. A. Anderson, J. Catal. Vol. 219 (2003), p.219.

[21] T. van der Meulen, A. Mattson, and L. Österlund, Vol. 251 (2007), p.131.

[22] K. Naito, T. Tachikawa, M. Fujitsuka, and T. Majima, J. Phys. Chem. C Vol. 112 (2008), p.1048.

[23] M. Leideborg, and G. Westin, Adv. Sci. Technol. Vol. 14 (1999), p.143.

[24] A. Mattsson, M. Leideborg, K. Larsson, G. Westin, and L. Österlund, J. Phys. Chem. B Vol. 110 (2006), p.1210.

[25] M. Andersson, A. Kiselev, L. Österlund, and A. E. C. Palmqvist, J. Phys. Chem. C Vol. 111 (2007), p.6789.

[26] M. Andersson, L. Österlund, S. Ljungström, and A. Palmqvist, J. Phys. Chem. B Vol. 106 (2001), p.10674.

[27] A. Mattson, M. Leideborg, L. Persson, G. Westin, and L. Österlund, J. Phys. Chem. C Vol. 113 (2009), p.3810.

[28] L. Österlund, V. Stengl, A. Mattsson, S. Bakardjieva, P. O. Andersson, and F. Oplustil, Vol. In Press, Corrected Proof (2009), p.

[29] Informartion on http: /cad4. cpac. washington. edu/WinXMorphHome/WinXMorph. htm.

[30] M. Ocana, V. Fornes, J. V. G. Ramos, and C. J. Serna, J. Solid State Chem. Vol. 75 (1988), p.364.

[31] F. P. Rotzinger, J. M. Kesselman-Truttman, S. J. Hug, V. Shklover, and M. Grätzel, J. Phys. Chem. B Vol. 108 (2004), p.5004.

[32] T. N. Obee, and S. O. Hay, Environ. Sci. Technol. Vol. 31 (1997), p. (2034).

[33] B. E. Hayden, A. King, and M. A. Newton, J. Phys. Chem. B Vol. 103 (1999), p.203.

[34] Y. Morikawa, I. Takahashi, M. Aizawa, Y. Namai, T. Sasaki, and Y. Iwasawa, J. Phys. Chem. B Vol. 108 (2004), p.14446.

[35] Y. Uemura, T. Taniike, M. Tada, Y. Morikawa, and Y. Iwasawa, J. Phys. Chem. C Vol. 111 (2007), p.16379.

[36] S. A. Chambers, M. A. Henderson, and Y. J. Kim, Surf. Rev. Lett. Vol. 5 (1998), p.381.

[37] L. F. Liao, C. F. Lien, D. L. Shieh, M. T. Chen, and J. L. Lin, J. Phys. Chem. B Vol. 106 (2002), p.11240.

[38] G. B. Deacon, and R. J. Phillips, Coord. Chem. Rev. Vol. 33 (1980), p.227.

[39] L. -F. Liao, W. -C. Wu, C. -Y. Chen, and J. -L. Lin, J. Phys. Chem. Vol. 105 (2001), p.7678.

[40] A. A. Davydov, Molecular Spectroscopy of Oxide Catalyst Surfaces (John Wiley & Sons, Chichester, 2003).

[41] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, New York, 1997).

[42] X. -Q. Gong, and A. Selloni, J. Phys. Chem. B Vol. 109 (2005), p.19560.

[43] V. P. Zhdanov, and B. Kasemo, Surf. Sci. Rep. Vol. 39 (2000), p.29.

[44] G. Busca, Catal. Today Vol. 27 (1996), p.457.

[45] X. Q. Gong, A. Selloni, and A. Vittadini, J. Phys. Chem. B Vol. 110 (2006), p.2804.

[45] B. Ekström-Hammarström et al., submitted.