Trajectory Planning for Mobile Car-Like Robot Navigation in an Extra-Road Environment

Article Preview

Abstract:

This paper presents a novel collision-free trajectory planner for mobile car-like robot navigation in an unknown extra-road environment subject to nonholonomic constraints. The environment is represented by a parking lot with real traffic conditions, this meaning that static and dynamic obstacles are to be taken into consideration. The final goal that must be fulfilled by the system is to find a free parking space for the vehicle and safely make the parking manoeuvre while simultaneously detect and avoid obstacles. The planner relies on the combination of the potential field method, the 3rd degree Bezier curves method and on the newly designed “look ahead trajectory predictions” method. The major advantages of this method are the very short calculation time and a continuous stable behaviour of the trajectory. The results presented demonstrate the capabilities of the proposed method for solving the collision-free path-planning problem.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 166-167)

Pages:

215-222

Citation:

Online since:

September 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Althoff, M., Stursberg, O., Buss, M.: Safety Assessment of Autonomous Cars Using Verification Techniques. In: Proceedings of 2007 American Control Conference, pp.4154-4159 (2007).

DOI: 10.1109/acc.2007.4282809

Google Scholar

[2] Brandt, T., Sattel, T. Wallaschek, J. (2005); On automatic Collision Avoidance Systems, SAE, (2005).

DOI: 10.4271/2005-01-1479

Google Scholar

[3] Bensalem, S., Gallien, M., Ingrand, F., et al.: Designing Autonomous Robots. IEEE Robot. Autom. Mag. 16, 67-77 (2009).

DOI: 10.1109/mra.2008.931631

Google Scholar

[4] Besl P. and McKay, N. A Method for Registration of 3-D Shapes, Trans. PAMI, Vol. 14, No. 2, (1992).

Google Scholar

[5] Gall R., Troester F., Mogan Gh. (2008); Research upon the development in the field of Autonomous vehicles, Proceedings of the 4 th International Conference Robotics'08, (vol. II, pp.673-678), Brasov, (2008).

Google Scholar

[6] Giovannangeli, C., Gaussier, P.: Autonomous Vision-based Navigation: Goal oriented Action Planning by Transient States Prediction, Cognitive Map Building, and Sensory-Motor Learning. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.676-683 (2008).

DOI: 10.1109/iros.2008.4650872

Google Scholar

[7] Hrich, K. (2005); Optimization of Emergency Trajectories of Autonomous Vehicles with Respect to Linear Vehicles Dynamic, IEEE/ASME 2005 International Conference on Advance Intelligent Mechatronics California SUA (2005).

DOI: 10.1109/aim.2005.1511036

Google Scholar

[8] Hwang, C.L., Wu, H.M., Shih, C.L.: Fuzzy Sliding-Mode Underactuated Control for Autonomous Dynamic Balance of an Electrical Bicycle. IEEE Trans. Control Syst. Technol. 17, 658-670 (2009).

DOI: 10.1109/tcst.2008.2004349

Google Scholar

[9] Klein, J., Lecomte, C., Miche, P.: Preceding Car Tracking Using Belief Functions and a Particle Filter. In: Proceedings of 19th International Conference on Pattern Recognition, vol. 4 (2008) doi: 10. 1109/ICPR. 2008. 4761008: 4.

DOI: 10.1109/icpr.2008.4761008

Google Scholar

[10] Krödel M. (2008); Towards a Learning Autonomous Driver System, Available from: http: /www. netcologne. de, Accessed: 2009-01-20.

Google Scholar

[11] Kubota, T., Hasimoto, T., Kawaguchi, J., et al.: Vision-based Navigation by Landmark for Robotic Explorer. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, pp.1170-1175 (2009).

DOI: 10.1109/robio.2009.4913166

Google Scholar

[12] Lamon P., Kolski S., Triebel R., Siegwart R., Burgard W. (2006); The SmartTer for ELROB 2006 - A Vehicle for Fully Autonomous Navigation and Mapping in Outdoor Environments, Available from: http: /www. smart-team. ch, Accessed: 2009-01-20.

Google Scholar

[13] Laszka, A., Várkonyi Kóczy, A.R., Pék, G., Várlaki, P.: Universal Autonomous Robot Navigation Using Quasi Optimal Path Generation. In: Proceedings of 4th International Conference on Autonomous Robots and Agents, pp.458-463 (2009).

DOI: 10.1109/icara.2000.4804008

Google Scholar

[14] Pozna C., Troester F. (2005); The inverse cinematic of the ACC mobile robot, Proceedings of the ninth IFTOMM international symposium on theory of machines and mechanisms, (vol. I, pp.358-366) Bucharest, (2005).

Google Scholar

[15] Rawlinson, D., Jarvis, R.: Ways to Tell Robots Where to Go - Directing Autonomous Robots Using Topological Instructions. IEEE Robot Autom. Mag. 15, 27-36 (2008).

DOI: 10.1109/mra.2008.921538

Google Scholar

[16] Troester F., Pozna C. (2004); The ACC Fahrautomat Project, Proceedings of the International Conference Robotica, Timisoara (2004).

Google Scholar

[17] Sadoghi Yazdi, H., Lotfizad, M., Fathy, M.: Car Tracking by Quantised Input LMS, QX-LMS Algorithm in Traffic Scenes. IEE Proc. Vis. Image Signal Process 153, 37- 45 (2006).

DOI: 10.1049/ip-vis:20045043

Google Scholar

[18] Shahmaleki, P., Mahzoon, M.: Designing a Hierarchical Fuzzy Controller for Backing- up a Four Wheel Autonomous Robot. In: Proceedings of 2008 American Control Conference, pp.4893-4897 (2009).

DOI: 10.1109/acc.2008.4587269

Google Scholar

[19] Shunguang, W., Decker, S., Chang, P., et al.: Collision Sensing by Stereo Vision and Radar Sensor Fusion. In: Proceedings of 2008 IEEE Intelligent Vehicles Symposium, pp.404-409 (2008).

DOI: 10.1109/ivs.2008.4621137

Google Scholar

[20] Zeiger F., Schilling K. (2008); Design of an User Interface for the Coordination of a Group of Mobile Robots, The 17 th International Symposium on Robot and Human Interactive Communication, Munich (Germany), (2008).

DOI: 10.1109/roman.2008.4600672

Google Scholar