Characterization of Traps in Crystalline Silicon on Glass Film Using Deep-Level Transient Spectroscopy

Article Preview

Abstract:

Thin crystalline silicon films on glass substrate, fabricated using solid phase crystallization for application in thin-film solar cells, were investigated by deep level transient spectroscopy (DLTS). The analyses of the DLTS spectra obtained during temperature scans revealed presence of carrier traps related to dislocations in silicon. Other carrier traps of yet unknown nature were detected as well. Variations of electrical activity of the traps were achieved applying variations in the process of the film formation. These changes were also detected during DLTS measurements, suggesting a possibility for applying of DLTS for the investigation and characterization of the thin-film Si material on glass.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

100-105

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Feltrin and A. Freundlich: Renewable Energy, Vol. 33 (2008), p.180.

Google Scholar

[2] L. L. Kazmerski: J. Electron Spectrosc. Relat. Phenom., Vol. 150 (2006), p.105.

Google Scholar

[3] M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O'Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young: Solar energy, Vol. 77 (2004), p.857.

DOI: 10.1016/j.solener.2004.06.023

Google Scholar

[4] A. Matsuda: Jpn. J. Appl. Phys., Part 1, Vol. 43, (2004), p.7909.

Google Scholar

[5] W. Beyer, J. Hupkes, and H. Stiebig: Thin Solid Films, Vol. 516 (2007), p.147.

Google Scholar

[6] P. A. Basore: Proc. 21st Eur. PVSEC, Dresden (2006), p.544.

Google Scholar

[7] T. Mchedlidze, T. Arguirov, M. Holla, and M. Kittler: J. Appl. Phys., Vol. 105 (2009), 093107.

Google Scholar

[8] T. Mchedlidze, T. Arguirov, S. Kouteva-Arguirova, and M. Kittler: Sol. State Phenom., Vol. 156-158 (2010), p.419.

DOI: 10.4028/www.scientific.net/ssp.156-158.419

Google Scholar

[9] T. Mchedlidze, J. Schneider, T. Arguirov, and M. Kittler: Phys. Stat. Sol. (c), Vol. 8 (2011), p.1334.

Google Scholar

[10] O. Breitenstein, R. Gupta, and J. Schneider: J. Appl. Phys., Vol. 102 (2007), 024511.

Google Scholar

[11] S. Weiss and R. Kassing: Solid-State Electron., Vol. 31 (1988), p.1733.

Google Scholar

[12] M. Seibt, H. Hedemann, A.A. Istratov, F. Riedel, A. Sattler, and W. Schröter: Phys. Stat. Sol. (a), Vol. 171 (1999), p.301.

DOI: 10.1002/(sici)1521-396x(199901)171:1<301::aid-pssa301>3.0.co;2-p

Google Scholar

[13] M. Seibt, R. Khalil, V. Kveder, and W. Schröter: Appl. Phys. A, Vol. 96 (2009), p.235.

Google Scholar

[14] M. Trushin, O. Vyvenko, T. Mchedlidze, O. Kononchuk, and M. Kittler: Sol. State Phenom., Vol. 156-158 (2010), p.283.

DOI: 10.4028/www.scientific.net/ssp.156-158.283

Google Scholar

[15] I. Isakov, A. Bondarenko, O. Vyvenko, V. Vdovin, E. Ubyivovk, and O. Kononchuk: J. Phys.: Conf. Ser., Vol. 281 (2011), 012010.

DOI: 10.1088/1742-6596/281/1/012010

Google Scholar

[16] V. Kveder, M. Badylevich, W. Schröter, M. Seibt, E. Steinman, and A. Izotov: Phys. Stat. Sol. (a), Vol. 202 (2005), p.901.

DOI: 10.1002/pssa.200460512

Google Scholar

[17] M. Kittler, T. Mchedlidze, T. Arguirov, W. Seifert, M. Reiche, and T. Wilhelm: Phys. Stat. Sol. (c), Vol. 3 (2009), p.707.

Google Scholar