C-V - and DLTS-Investigations of Pyramid-Shaped Ge Quantum Dots Embedded in N-Type Silicon

Article Preview

Abstract:

We investigate self-assembled pyramid-shaped Ge Quantum Dots (QDs) with lateral dimensions of 15 nm, and heights of 2.5-3 nm. These Ge QDs were grown by Molecular Beam Epitaxy (MBE) on n-type Si(100) substrates using the Sb-mediated growth mode. The resistivity of the substrates was about 5 Ωcm. The Si buffer layer below the QDs and the Si capping layer above them were doped up to 1018 cm-3 by Sb. Cross-section transmission electron microscopy shows the QDs and the Sb delta-doped layers. Using standard photolithographic techniques, a 0.3 mm2 Au Schottky contact was applied to the epilayer, while an Ohmic contact was formed on the back side of the substrate. Plotting C-2 vs. V plot reveals the nominal doping of 1018 cm-3. DLTS studies revealed two levels with fitted activation energies of 49 meV and 360-390 meV. They are related to the Sb doping and the Pb interface states, respectively. The simulation suggests a deep level with a volumetric concentration of 2.55×1015 cm-3. Multiplying this value by the thickness of the depletion region obtained from the CV measurements, we find that the deep level capture about 5.8×109 electrons per cm2.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

72-75

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. J. Eaglesham and M. Cerullo: Phys. Rev. Lett. Vol. 64 (1990), p. (1943).

Google Scholar

[2] G. Abstreiter, P. Schittenhelm, C. Engel, E. Silveira, A. Zrenner, D. Meertens and W. Jager: Semicond. Sci. Technol. Vol. 11 (1996), p.1521.

DOI: 10.1088/0268-1242/11/11s/012

Google Scholar

[3] C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, C. Miesner, T. Asperger, K. Brunner and G. Abstreiter: Appl. Phys. Lett. Vol. 77 (2000), p.4169.

DOI: 10.1063/1.1334651

Google Scholar

[4] C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, C. Miesner, T. Asperger, K. Brunner and G. Abstreiter: Phys. Stat. Sol. B. Vol. 224 (2001), p.261.

DOI: 10.1002/1521-3951(200103)224:1<261::aid-pssb261>3.0.co;2-3

Google Scholar

[5] V. Lavchiev, R. Holly, G. Chen, F. Schaffler, R. Goldhahn and W. Jantsch: Opt. Lett. Vol. 34 (2009) p.3785.

Google Scholar

[6] A. Tonkikh, N. Zakharov, V. Talalaev and P. Werner: Phys. Stat. Sol. RRL Vol. 4 (2010), p.224.

DOI: 10.1002/pssr.201004259

Google Scholar

[7] V. -T. Rangel-Kuoppa and A. Conde-Gallardo: Thin Solid Films Vol. 519 (2010), p.453.

Google Scholar

[8] V. -T. Rangel-Kuoppa and G. Chen: Rev. Sci. Instrum. Vol. 81 (2010), p.036102.

Google Scholar

[9] L. Dobaczewski, S. Bernardini, P. Kruszewski, P. K. Hurley, V. P. Markevich, I. D. Hawkins and A. R. Peaker: Appl. Phys. Lett. Vol. 92 (2008), p.242104.

DOI: 10.1063/1.2939001

Google Scholar

[10] A. A. Tonkikh, G. E. Cirlin, V. G. Dubrovskii, V. M. Ustinov and P. Werner, Semiconductors Vol. 38 (2004), p.1202.

Google Scholar

[11] S. M. Sze, Physics of Semiconductor Devices, third ed. Wiley-Interscience, New York, (1969).

Google Scholar

[12] C. Penn, F. Schaffler, G. Bauer and S. Glutsch: Phys. Rev. B Vol. 59 (1999), p.13314.

Google Scholar

[13] M. Brehm, T. Suzuki, T. Fromherz, Z. Zhong, N. Hrauda, F. Hackl, J. Stangl, F. Schaffler and G. Bauer: New Journal of Physics Vol. 11 (2009), p.063021.

DOI: 10.1088/1367-2630/11/6/063021

Google Scholar