Coefficient of Diffusion in Crystals of Si1-xGex: Role of Preexponential Factor

Article Preview

Abstract:

In the present work the results of theoretical analysis of the process of diffusion of covalently bonded atoms (interstitial oxygen atoms) in Si1-xGex alloys are presented. The diffusion coefficient (activation energy and pre-exponential factor) was calculated by means of quantum-chemical simulations (Hartree–Fock, NDDO, PM5) and the dependences of the activation energy and pre-exponential factor on Ge atoms concentration (x) were analyzed with the use of the percolation theory. The study has revealed that the diffusivity of impurities (defects) in alloys can decrease considerably at low concentration (x<0.05) of a minor alloy component and this variation results from the fact that the pre-exponential factor depends on the concentration of component elements of the alloy. The alloy-induced decrease in the pre-exponential factor is associated with removal of the degeneracy of the number of equivalent diffusion paths. It is found that a sharp decrease in the pre-exponential factor causes experimentally observed decreases in the coefficient of diffusion of interstitial oxygen atoms and in the rate of formation of oxygen thermal donors in Si1‑xGex crystals at x~0.01.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

94-99

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Isabelle Berbezier, SciTopics, SiGe nanostructures strain control dopant incorporation and properties. html (2010) http: /www. scitopics. com.

Google Scholar

[2] A. Pakfar, Dopant diffusion in SiGe: modeling stress and Ge chemical effects, Materials Science and Engineering B89 (2002) 225-228.

DOI: 10.1016/s0921-5107(01)00790-5

Google Scholar

[3] J. P. Stewart, Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements, J. Mol. Model. 13 (2007) 1173-1213.

DOI: 10.1007/s00894-007-0233-4

Google Scholar

[4] P. Hänggi, P. Talkner and M. Borcovec, Reaction-rate theory: fifty years after Kramers, Rev. Mod. Phys. 62 (1990) 251-341.

DOI: 10.1103/revmodphys.62.251

Google Scholar

[5] V. E. Gusakov, General Model of Diffusion of Interstitial Oxygen in Silicon, Germanium and Silicon - Germanium Crystals Solid State Phenom. 108–109 (2005) 413-418.

DOI: 10.4028/www.scientific.net/ssp.108-109.413

Google Scholar

[6] Vasilii Gusakov, Unified model of diffusion of interstitial oxygen in silicon and germanium crystals, J. Phys.: Condens. Matter 17 (2005) S2285-S2291.

DOI: 10.1088/0953-8984/17/22/017

Google Scholar

[7] V.J.B. Torres, J. Cautinho, P. R. Briddon and M. Barroso, Ab-initio vibrational properties of SiGe alloys, Thin Solid Films. 517 (2008) 395 -397.

DOI: 10.1016/j.tsf.2008.08.041

Google Scholar

[8] B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors, Springer Series in Solid-State Sciences, Berlin, (1984).

DOI: 10.1007/978-3-662-02403-4

Google Scholar

[9] L. I. Khirunenko, Yu. V. Pomozov, M. G. Sosnin, A.V. Duvanskii, N.A. Sobolev, N.V. Abrosimov, H. Riemann, Oxygen Diffusion in Si1-xGex Alloys, Solid State Phenomena 156-158 (2010) 181- 185.

DOI: 10.1016/j.physb.2009.08.168

Google Scholar

[10] V. M. Babich, M. Ya. Valah, V. B. Kovalchuk, G. Yu. Rudko, N. I. Shahraychuk, Optical and electrical properties of Ge-doped and heat-treated silicon, Ukr. J. Phys. 35 (1990) 1561 1565.

Google Scholar

[11] D. J. Brinkevich, V. P. Markevich, L. I. Murin, V. V. Petrov, Kinetics of formation of thermal donors in Si: Ge: O crystals, Sov. Phys. Semicond. 26 (1992) 383-387.

Google Scholar

[12] E. Hild, P. Gaworzewski, M. Franz, and K. Pressel, Thermal donors in silicon-rich SiGe, Appl. Phys. Lett. 72 (1998) 1362-1364.

DOI: 10.1063/1.121055

Google Scholar

[13] Hong Li , Deren Yang, Xuegong Yu, Xiangyang Ma, Daxi Tian, Liben Li and Duanlin Que, The effect of germanium doping on oxygen donors in Czochralski-grown silicon, J. Phys.: Condens. Matter 16 (2004) 5745-5750.

DOI: 10.1088/0953-8984/16/32/011

Google Scholar

[14] Young Joo Lee, J. von Boehm, M. Pesola, and R. M. Nieminen, First-principles study of migration, restructuring, and dissociation energies of oxygen complexes in silicon, Phys. Rev. B, 65 (2002) 085205-12.

DOI: 10.1103/physrevb.65.085205

Google Scholar