Recombination Activity of Twin Boundaries in Silicon Ribbons

Article Preview

Abstract:

Investigations of silicon layers grown on carbon foil were carried out using the Electron Beam Induced Current (EBIC) methods. The most of grain boundaries in these ribbons are (111) twin boundaries elongated along the direction. The EBIC measurements showed that the recombination contrast of dislocations and of the most part of twin boundaries at room temperature is practically absent and only random grain boundaries and very small part of twin boundaries produce a noticeable contrast. At lower temperatures a number of electrically active twin boundaries increases but the most part of them remains inactive. A contamination with iron increases the recombination activity of random boundaries but not the activity of twin boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

106-109

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.K. Brantov, B.M. Epelbaum and V.A. Tatarchenko: J. Crystal Growth Vol. 82 (1987) p.122.

Google Scholar

[2] S.K. Brantov, K.N. Filonov, B.M. Epelbaum, A.M. Sitnikov and L.V. Miheeva: J. Crystal Growth Vol. 104 (1990) p.98.

DOI: 10.1016/0022-0248(90)90315-c

Google Scholar

[3] S.K. Brantov, V.V. Kveder, N.N. Kuznetzov and V.I. Orlov: Solid State Phenom. Vol. 168-169 (2005) p.503.

Google Scholar

[4] S. Brantov, A. Eltzov, O. Feklisova and E. Yakimov, Solid State Phenomena Vol. 156-158 (2010) p.473.

DOI: 10.4028/www.scientific.net/ssp.156-158.473

Google Scholar

[5] B. Cunningham, H. Strunk and D. G. Ast, Appl. Phys. Lett. Vol. 40 (1982) p.237.

Google Scholar

[6] J. Chen, B. Chen, T. Sekiguchi, M. Fukuzawa and M. Yamada, Appl. Phys. Lett. Vol. 93 (2008) 112105.

Google Scholar

[7] S. Brantov, O. Feklisova and E. Yakimov, Phys. Status Solidi (c) Vol. 8 (2011) p.1384.

Google Scholar

[8] K. Arafune, E. Ohishi, H. Sai, Y. Terada, Y. Ohshita and M. Yamaguchi, Jap. J. Appl. Phys. Vol. 45 (2006) p.6153 – Σ3 – low EBIC contrast after Fe contam, small angle bound. – high.

Google Scholar

[9] J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido and S. Tsurekawa, 5490 J. Appl. Phys., Vol. 96, No. 10, 15 November 2004 - Σ3 – low EBIC contrast before and after Fe contam, random after contam. up to 25%, contr. disl. after Fe contam. Temp. depend.

Google Scholar

[10] O.V. Feklisova, E.B. Yakimov, N. Yarykin and B. Pichaud, J. Phys.: Condens. Matter. Vol. 16 (2004) p. S201.

DOI: 10.1088/0953-8984/16/2/023

Google Scholar

[11] J. Chen, T. Sekiguch and D. Yang, Phys. Stat. Sol. (c) Vol. 4 (2007) p.2908.

Google Scholar

[12] M. Kittler, C. Ulhaq-Bouillet and V. Higgs, Mater. Sci. Engineer. Vol. B24 (1994), p.52.

Google Scholar

[13] J. Bailey, S.A. McHugo, H. Hieslmair and E.R. Weber, J. Electron. Mat. Vol. 25 (1996), p.1417.

Google Scholar

[14] E.B. Yakimov, J. Phys. III, Vol. 7 (1997), p.2293.

Google Scholar