Acceptor Deactivation in Silicon Nanowires Analyzed by Scanning Spreading Resistance Microscopy

Article Preview

Abstract:

Vertical p-type Si nanowires (NWs) "in-situ" doped during growth or "ex-situ" by B ion implantation are investigated regarding their acceptor activation. Due to the much higher surface to volume ratio of the NW in comparison to bulk material the surface effect plays an important role in determining the doping behaviour. Dopant segregation and fixed positive charges at the Si/SiO2 interface result in an acceptor deactivation. The B concentration introduced into the NW has to balance the deactivation effects in order to reach the intended electrical parameters. Scanning spreading resistance microscopy is used for the electrical characterization of the NWs. This analysis method provides images of the local resistivity of NW cross sections. Resistivity data are converted into acceptor concentration values by calibration. The study demonstrates that scanning spreading resistance microscopy is a suitable analysis method capable to spatially and electrically resolve Si NWs in the nanometer-scale. The NW resistivity is found to be size dependent and shows a significant increase as the NW is below 25 nm in diameter. The obtained data can be explained by a core-shell model with a highly conductive NW core and low conductive shell.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

50-55

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Xie, Y.J. Hu, Y. Fang, J.J. Huang and C.M. Lieber, Proc Nati Acad Sci USA 106 (2009) 15254.

Google Scholar

[2] G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, S. Hayashi, Nano Lett. 8 (2008) 2620.

Google Scholar

[3] V. Schmidt, S. Senz and U. Gösele; Appl. Phys. A: Mater. Sci. Process. 86 (2007) 187.

Google Scholar

[4] M.T. Björk, H. Schmid, J. Knoch, S. Riel and W. Riess, Nature Nanotech. 4 (2009) 103.

Google Scholar

[5] M. Diarra, Y.-M. Niquet, C. Delerue, and G. Allan, Phys. Rev. B75 (2007) 045301.

Google Scholar

[6] D.R. Khanal, J.W.L. Yim, W. Walukiewicz and J. Wu, Nano Lett. 7 (2007) 1186.

Google Scholar

[7] X. Ou, P. Das Kanungo, R. Kögler, P. Werner, U. Gösele, W. Skorupa and X. Wang, Nano Lett., 10 (2010) 171.

DOI: 10.1021/nl903228s

Google Scholar

[8] P. Werner, N.D. Zakharov, G. Gerth, L. Schubert and U. Gösele, Int. J. Mater. Res. 97 (2006) 1008.

Google Scholar

[9] Z. Huang, N. Geyer, P. Werner, J. de Boor and U. Gösele, Adv. Mater 23 (2011) 285.

Google Scholar

[10] P. Das Kanungo, R. Kögler, K. Nguyen-Duc, N. Zakharov P. Werner and U. Gösele, Nanotechnology 20 (2009) 165706.

DOI: 10.1088/0957-4484/20/16/165706

Google Scholar

[11] P. Eyben, W. Vandervorst, D. Alvarez, M. Xu and M. Fouchier, Scanning probe microscopy, Eds: S. Kalinin and A. Gruverman, Springer , NY 2007.

Google Scholar

[12] P. Eyben, F. Clemente, K. Vanstreels, G. Pourtois, T. Clarysse, K. Sankaran, J. Mody, W. Vandervorst, K. Mylvaganam and L. Zhang, J. Vac. Sci. Technol. B 28 (2010) 401.

DOI: 10.1116/1.3273895

Google Scholar

[13] C.C. Büttner and M. Zacharias, Appl. Phys. Lett., 89 (2006) 263106.

Google Scholar

[14] X. Ou, P. Das Kanungo, R. Kögler, P. Werner, U. Gösele, W. Skorupa and X. Wang, Adv. Mater. 22 (2010) 4020.

DOI: 10.1002/adma.201001086

Google Scholar

[15] X. Ou, N. Geyer, R. Kögler, P. Werner and W. Skorupa, Appl. Phys. Lett. (2011) accepted.

Google Scholar

[16] V. Schmidt, S. Senz and U. Gösele, Appl. Phys. A: Mater. Sci. Process. 86 (2007) 187.

Google Scholar

[17] K. Seo, S. Sharma, A.A. Yasseri, D.R. Stewart and T.I. Kamins, Electrochem. Solid-State Lett., 9 (2006) G69.

DOI: 10.1149/1.2159295

Google Scholar