Dislocation Structure, Electrical and Luminescent Properties of Hydrophilically Bonded Silicon Wafer Interface

Article Preview

Abstract:

The dislocation-related luminescence (DRL) in the vicinity of D1 band (0.8 eV) in hydrophilically bonded n- and p-type silicon wafers is investigated by means of recently developed pulsed trap refilling enhanced luminescence technique (Pulsed-TREL). The shallow and deep dislocation related electronic states in both upper and lower part of the band gap are determined and characterized by means of DLTS. Among those traps we have established ones which directly participate in D1 DRL. We have shown that D1 luminescence goes via shallow dislocation related states (SDRS) located close to the conduction and valence bands with thermal activation energy of about 0.1 eV whereas deep levels do not participate in D1 DRL. The model explaining the fact how the 0.8 eV luminescence may go through levels which interlevel energy is at least 0.97 eV in terms of Coulomb interaction between ionized SDRS is suggested.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

233-242

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Trupke, R.A. Bardos, M.C. Schubert, and W. Warta, Photoluminescence imaging of silicon wafers, Applied Physics Letters 89, 044107 (2006).

DOI: 10.1063/1.2234747

Google Scholar

[2] N.A. Drozdov, A.A. Patrin, and V.D. Tkachev, Recombination radiation on dislocations in silicon, JETP Letters 23 (1976).

Google Scholar

[3] M. Kittler, X. Yu, T. Mchedlidze, T. Arguirov, O.F. Vyvenko, W. Seifert, M. Reiche, T. Wilhelm, M. Seibt, O. Voß, A. Wolff, and W. Fritzsche, Regular Dislocation Networks in Silicon as a Tool for Nanostructure Devices used in Optics, Biology, and Electronics, Small 3, 964 (2007).

DOI: 10.1002/smll.200600539

Google Scholar

[4] X. Yu, W. Seifert, O.F. Vyvenko, M. Kittler, T. Wilhelm, and M. Reiche, A pure 1.5 mu m electroluminescence from metal-oxide-silicon tunneling diode using dislocation network, Applied Physics Letters 93, 041108 (2008).

DOI: 10.1063/1.2965126

Google Scholar

[5] R. Sauer, J. Weber, and J. Stolz, Dislocation-Related Photoluminescence in Silicon, Applied Physics A 36, 1 (1985).

Google Scholar

[6] V. Higgs, M. Goulding, A. Brinklow, and P. Kightley, Characterization of epitaxial and oxidation-induced stacking faults in silicon: The influence of transition-metal contamination, Applied Physics Letters 60, 1369 (1992).

DOI: 10.1063/1.107293

Google Scholar

[7] V. Higgs, E.C. Lightowlers, S. Tajbakhsh, and P.J. Wright, Cathodoluminescence imaging and spectroscopy of dislocations in Si and Si[sub 1 - x]Ge[sub x] alloys, Applied Physics Letters 61, 1087 (1992).

DOI: 10.1063/1.107676

Google Scholar

[8] L.C. Kimerling, and J.R. Patel, Defect states associated with dislocations in silicon, Applied Physics Letters 34, 73 (1979).

DOI: 10.1063/1.90563

Google Scholar

[9] P. Omling, E.R. Weber, L. Montelius, H. Alexander, and J. Michel, Electrical properties of dislocations and point defects in plastically deformed silicon, Phys. Rev. B 32, 6571 (1985).

DOI: 10.1103/physrevb.32.6571

Google Scholar

[10] V. Kveder, T. Sekiguchi, and K. Sumino, Electronic states associated with dislocations in p-type silicon studied by means of electric-dipole spin resonance and deep-level transient spectroscopy, Phys. Rev. B 51, 16721 (1995).

DOI: 10.1103/physrevb.51.16721

Google Scholar

[11] V. Kveder, M. Badylevich, W. Schröter, M. Seibt, E. Steinman, and A. Izotov, Silicon light-emitting diodes based on dislocation-related luminescence, Phys. Stat. Sol. (a) 202, 901 (2005).

DOI: 10.1002/pssa.200460512

Google Scholar

[12] V.V. Kveder, E.A. Steinman, S.A. Shevchenko, and H.G. Grimmeiss, Dislocation-related electroluminescence at room temperature in plastically deformed silicon, Phys. Rev. B 51, 10520 (1995).

DOI: 10.1103/physrevb.51.10520

Google Scholar

[13] V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schroter, Room-temperature silicon light-emitting diodes based on dislocation luminescence, Applied Physics Letters 84, 2106 (2004).

DOI: 10.1063/1.1689402

Google Scholar

[14] Y.T. Rebane, and J.W. Steeds, Hole bound states in the deformation field of screw dislocations in cubic semiconductors, Phys. Rev. B 48, 14963 (1993).

DOI: 10.1103/physrevb.48.14963

Google Scholar

[15] J.-L. Farvacque, and P. Franзois, Numerical Determination of Shallow Electronic States Bound by Dislocations in Semiconductors, Phys. Stat. Sol. (b) 223, 635 (2001).

DOI: 10.1002/1521-3951(200102)223:3<635::aid-pssb635>3.0.co;2-k

Google Scholar

[16] A.J. Kenyon, E.A. Steinman, C.W. Pitt, D.E. Hole, and V.I. Vdovin, The origin of the 0.78 eV luminescence band in dislocated silicon, J. Phys.: Condens. Matter 15, S2843 (2003).

DOI: 10.1088/0953-8984/15/39/009

Google Scholar

[17] E.A. Steinman, Influence of oxygen on the dislocation related luminescence centers in silicon, Phys. Stat. Sol. (c) 2, 1837 (2005).

DOI: 10.1002/pssc.200460513

Google Scholar

[18] T. Sekiguchi, S. Ito, and A. Kanai, Cathodoluminescence study on the tilt and twist boundaries in bonded silicon wafers Materials Science and Engineering B 91-92, 244 (2002).

DOI: 10.1016/s0921-5107(01)01020-0

Google Scholar

[19] T. Mchedlidze, O. Kononchuk, T. Arguirov, M. Trushin, M. Reiche, and M. Kittler, Determination of the Origin of Dislocation Related Luminescence from Silicon Using Regular Dislocation Networks, Solid State Phen. 156-158, 567 (2009).

DOI: 10.4028/www.scientific.net/ssp.156-158.567

Google Scholar

[20] T. Mchedlidze, T. Arguirov, O. Kononchuk, M. Trushin, and M. Kittler, Structures responsible for radiative and non-radiative recombination activity of dislocations in silicon, Phys. Stat. Sol. (c) 8, 991 (2011).

DOI: 10.1002/pssc.201000367

Google Scholar

[21] X. Yu, O. Vyvenko, M. Kittler, W. Seifert, T. Mtchedlidze, T. Arguirov, and M. Reiche, Combined CL/EBIC/DLTS investigation of a regular dislocation network formed by Si wafer direct bonding, Semiconductors 41, 458 (2007).

DOI: 10.1134/s1063782607040197

Google Scholar

[22] A. Bondarenko, O. Vyvenko, N. Bazlov, and O. Kononchuk, Dislocation luminescence and electrical properties of dislocation network produced by silicon direct wafer bonding, Phys. B: Cond. Matter 404, 4608 (2009).

DOI: 10.1016/j.physb.2009.08.143

Google Scholar

[23] A. Bondarenko, O. Vyvenko, I. Isakov, and O. Kononchuk, Correlation between cathodoluminescent and electrical properties of dislocation network in the space charge region of Schottky-diode, Phys. Stat. Sol. (c) 8, 1273 (2011).

DOI: 10.1002/pssc.201083995

Google Scholar

[24] A.S. Bondarenko, O.F. Vyvenko, and I.A. Isakov, Identification of dislocation-related luminescence participating levels in silicon by DLTS and Pulsed-CL profiling, Journal of Physics: Conference Series 281, 012008 (2011).

DOI: 10.1088/1742-6596/281/1/012008

Google Scholar

[25] I. Isakov, A. Bondarenko, O. Vyvenko, V. Vdovin, E. Ubyivovk, and O. Kononchuk, Electrical levels of dislocation networks in p- and n-type Si, Journal of Physics: Conference Series 281 (2011).

DOI: 10.1088/1742-6596/281/1/012010

Google Scholar

[26] M. Trushin, O. Vyvenko, T. Mchedlidze, O. Kononchuk, and M. Kittler, Electronic States of Oxygen-Free Dislocation Networks Produced by Direct Bonding of Silicon Wafers, Solid State Phen. 156-158, 283 (2009).

DOI: 10.4028/www.scientific.net/ssp.156-158.283

Google Scholar

[27] M. Trushin, O. Vyvenko, V. Vdovin, and M. Kittler, Giant Poole-Frenkel effect for the shallow dislocation-related hole traps in silicon, Journal of Physics: Conference Series 281 (2011).

DOI: 10.1088/1742-6596/281/1/012009

Google Scholar