[1]
M. Reiche, M. Kittler, R. Scholz, A. Hähnel, T. Arguirov, Structure and properties of dislocations in interfaces of bonded silicon wafers, J. Phys.: Conf. Ser. 281 (2011) 012017-012026.
DOI: 10.1088/1742-6596/281/1/012017
Google Scholar
[2]
M. Reiche, Dislocation networks formed by silicon wafer direct bonding, Matatials Science Forum 590 (2008) 57-78.
DOI: 10.4028/www.scientific.net/msf.590.57
Google Scholar
[3]
H. Föll and D. Ast, TEM observation on grain boundaries in sintered silicon, Phil. Mag. A, 40 (1979) 589-610.
DOI: 10.1080/01418617908234861
Google Scholar
[4]
M. Benamara, A. Rocher, A. Laporte, G. Sarrabayrouse, L. Lescouzѐres, A. PeyerLavigne, M. Fnaiech and A. Claverie, Atomic structure of the interface between silicon directly bonded wafers, Mat. Res. Soc. Symp. Proc. 378 (1995) 863-868.
DOI: 10.1557/proc-378-863
Google Scholar
[5]
T. Akatsu, R. Scholz, U. Gösele, Dislocation structure in low-angle interface between bonded Si(001) wafers, J. Mat. Sci. 39 (2004) 3031-3039.
DOI: 10.1023/b:jmsc.0000025829.40338.04
Google Scholar
[6]
K. Rousseau, J. Eymery, F. Fournel, J.-P. Morniroli, J.-L. Rouviѐre, (001) Ultra silicon surfacial grain boundaries obtained by direct wafer bonding process: accurate control of the structure before bonding, Phil. Mag. 85 (2005) 2415-2448.
DOI: 10.1080/14786430500070834
Google Scholar
[7]
M. Trushin, O. Vyvenko, V. Vdovin, M. Kittler, Giant Pool-Frenkel effect for the shallow dislocation-related hole traps in silicon, J. Phys.: Conf. Ser. 281 (2011) 012009-012016.
DOI: 10.1088/1742-6596/281/1/012009
Google Scholar
[8]
U. Gösele, Y. Bluhm, G. Kästner, P. Kopperschmidt, G. Kräuter, R. Scholz, A. Schumacher, St. Senz, and Q.-Y. Tong, Fundamental issues in wafer bonding, J. Vac. Sci. Technol. A 17 (1999) 1145-1152.
DOI: 10.1116/1.581788
Google Scholar
[9]
F. Fournel, H. Moriceau, and B. Aspar, Accurate control of the misorientation angles in direct wafer bonding, Appl. Phys. Lett. 80 (2002) 793-795.
DOI: 10.1063/1.1446987
Google Scholar
[10]
Vdovin V.I., Matveeva L.A., Semenova G.N., Skorohod M.Ya., Tkhorik Yu.A., Khazan L.S., Mechanism of misfit dislocation network formation in the heteroepitaxial system Ge-GaAs (001), Phys. Stat. Sol. (a) 92 (1985) 379-390.
DOI: 10.1002/pssa.2210920206
Google Scholar
[11]
J. Coelho, G. Patriarche, F. Glas, I. Sagnes, and G. Saint-Girons, Dislocation networks adapted to order the growth of III-V semiconductor nanostructures, Phys. Stat. Sol. (c) 2 (2005) 1933-1937.
DOI: 10.1002/pssc.200460528
Google Scholar
[12]
T. Wilhelm, T. Mchedlidze, X. Yu, T. Arguirov, M. Kittler, and M. Reiche, Regular dislocation networks in silicon. Part I: Structure, Solid State Phenom. 131-133 (2008) 571-578.
DOI: 10.4028/www.scientific.net/ssp.131-133.571
Google Scholar