Efficiency-Limiting Recombination in Multicrystalline Silicon Solar Cells

Article Preview

Abstract:

This work presents recent advances in the characterisation of carrier recombination and impurities at Fraunhofer ISE. The role of iron contamination during crystallisation is analysed in more detail. Numerical simulations and comparisons to experimental data are presented which demonstrate the impact of iron from the crucible and crucible coating and show the in-diffusion of iron into the silicon melt as well as into the solid silicon during crystal cooling. Measurements of spatially resolved carrier lifetime and interstitial iron concentration on wafers after phosphorus diffusion gettering are used as input for cell efficiency modelling which reveals the specific and quantitative role of iron on cell parameters in multicrystalline silicon. A new photoluminescence based method is presented which quantitatively determines the interstitial iron concentration in finished solar cells. We finally present advances in defect characterisation with sub-micrometre resolution: We show recent progress in micro photoluminescence spectroscopy for the quantitative measurement of interstitial chromium with high spatial resolution. A further development of this setup will be discussed: By combining the principle of Light Beam Induced Current (LBIC) or voltage (LBIV) and the highly localized illumination, images of carrier recombination at local defects are presented which feature a, compared to EBIC, higher signal-to-noise ratio.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

110-117

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Geyer, G. Schwichtenberg, and A. Müller, in 31st IEEE Photovoltaic Specialists Conference, 2005, p.1059.

Google Scholar

[2] E. Olsen and E. J. Ovrelid, Progress in Photovoltaics 16 (2008) 93.

Google Scholar

[3] R. Kvande, L. Arnberg, and C. Martin, Journal of Crystal Growth 311 (2009) 765.

Google Scholar

[4] T. Naerland, L. Arnberg, and A. Holt, Progress in Photovoltaics: Research and Applications 17 (2009) 289.

Google Scholar

[5] M. C. Schubert, J. Schön, S. F., W. Kwapil, A. Abdollahinia, B. Michl, S. Riepe, C. Schmid, M. Schumann, S. Meyer, and W. Warta, Journal of Photovoltaics (submitted).

DOI: 10.1109/jphotov.2013.2279116

Google Scholar

[6] J. Giesecke, M. C. Schubert, D. Walter, and W. Warta, Applied Physics Letters 97 (2010) 092109.

Google Scholar

[7] B. Michl, M. Rüdiger, J. Giesecke, M. Hermle, W. Warta, and M. C. Schubert, Solar Energy Materials & Solar Cells 98 (2012) 441.

DOI: 10.1016/j.solmat.2011.11.047

Google Scholar

[8] J. A. Giesecke, B. Michl, F. Schindler, M. C. Schubert, and W. Warta, Solar Energy Materials & Solar Cells 95 (2011) (1979).

DOI: 10.1016/j.solmat.2011.02.023

Google Scholar

[9] J. Bajaj, W. E. Tennant, R. Zucca, and S. J. C. Irvine, Semicond. Sci. Technol. 8 (1993) 872.

Google Scholar

[10] A. C. Ribes, S. Damaskinos, H. F. Tiedje, A. E. Dixon, and D. E. Brodie, Solar Energy Materials and Solar Cells 44 (1996) 439.

DOI: 10.1016/s0927-0248(95)00156-5

Google Scholar

[11] M. De Vittorio, R. Cingolani, M. Mazzer, and D. B. Holt, Rev. Sci. Instrum. 70 (1999) 3429.

Google Scholar

[12] J. Martín, C. Fernández-Lorenzo, J. A. Poce-Fatou, and R. Alcántara, Progress in Photovoltaics 12 (2004) 283.

DOI: 10.1002/pip.528

Google Scholar

[13] W. Kwapil and e. al., in 27th EU PVSEC, (2012).

Google Scholar

[14] Sentaurus TCAD, Synopsys, Zürich, Switzerland.

Google Scholar

[15] J. Schön, H. Habenicht, M. C. Schubert, and W. Warta, Solid State Phenomena 156-158 (2010) 223.

DOI: 10.4028/www.scientific.net/ssp.156-158.223

Google Scholar

[16] D. Macdonald, J. Tan, and T. Trupke, Journal of Applied Physics 103 (2008) 073710.

Google Scholar

[17] M. C. Schubert, H. Habenicht, and W. Warta, Journal of Photovoltaics 1 (2011) 168.

Google Scholar

[18] F. D. Heinz, W. Warta, and M. C. Schubert, Energy Procedia (2013) accepted.

Google Scholar

[19] H. Habenicht, M. C. Schubert, and W. Warta, Journal of Applied Physics 108 (2010) 034909.

Google Scholar

[20] P. Gundel, F. D. Heinz, C. Schubert, J. A. Giesecke, and W. Warta, Journal of Applied Physics 108 (2010) 033705.

DOI: 10.1063/1.3462433

Google Scholar