[1]
T. Wilson, W. R. Osinski, J. N. Gannaway, G. R. Booker, Comparison of dislocation images obtained using the scanning optical microscope and scanning electron microscope, J. Mater. Sci. 14 (1979) 961-965.
DOI: 10.1007/bf00550728
Google Scholar
[2]
A. Mittiga, M. Capizzi, C. Coluzza, A. Frola, V. Parisi, D. Cavalcoli, L. Moro and M. Prudenziati, Oblique grain boundaries: Analysis of light and electron beam induced current profiles in silicon, J. Appl. Phys. 63 (1988) 4748-4750.
DOI: 10.1063/1.340135
Google Scholar
[3]
O.V. Feklisova, X. Yu, D. Yang and E.B. Yakimov, Effect of metal contamination on recombination properties of extended defects in multicrystalline Si. Phys. Stat. Sol. C 9 (2012) 1942–(1946).
DOI: 10.1002/pssc.201200138
Google Scholar
[4]
O.V. Feklisova, X. Yu, D. Yang and E.B. Yakimov, Influence of Metal Impurities on Recombination Activity of Dislocations in Multicrystalline Silicon. Semiconductors 47 (2013) 232–234.
DOI: 10.1134/s1063782613020097
Google Scholar
[5]
M. Kittler, W. Seifert and O. Krüger, Electrical Behaviour of Crystal Defects in Silicon Solar Cells, Solid State Phenom. 78-79 (2001) 39-48.
DOI: 10.4028/www.scientific.net/ssp.78-79.39
Google Scholar
[6]
M. Rinio, S. Peters, M. Werner, A. Lawerenz and H.J. Möller, Measurements of the Normalized Recombination Strength of Dislocations in Multicrystalline Silicon Solar Cells, Solid State Phenom. 82-84 (2002) 701-706.
DOI: 10.4028/www.scientific.net/ssp.82-84.701
Google Scholar
[7]
O.V. Feklisova, E.B. Yakimov and N. Yarykin, Contribution of the disturbed dislocation slip planes to the electrical properties of plastically deformed silicon, Physica B 340–342 (2003) 1005–1008.
DOI: 10.1016/j.physb.2003.09.196
Google Scholar
[8]
V.G. Eremenko and E.B. Yakimov, Anomalous electrical properties of dislocation slip plane in Si, Eur. Phys. J. Appl. Phys. 27 (2004) 349–351.
DOI: 10.1051/epjap:2004149
Google Scholar
[9]
O.V. Feklisova, E.B. Yakimov, N. Yarykin and B. Pichaud, Temperature dependence of electron beam induced current contrast of deformation-induced defects in silicon, J. Phys.: Condens. Matter. 16 (2004) S201–S205.
DOI: 10.1088/0953-8984/16/2/023
Google Scholar
[10]
O.V. Feklisova, B. Pichaud and E.B. Yakimov, Annealing effect on the electrical activity of extended defects in plastically deformed p-Si with low dislocation density, Phys. Stat. Sol. (a) 202 (2005) 896–900.
DOI: 10.1002/pssa.200460511
Google Scholar
[11]
M. Kittler, C. Ulhaq-Bouillet and V. Higgs, Recombination activity of clean, and contaminated misfit dislocations in Si(Ge) structures, Mater. Sci. Engineer. B 24 (1994) 52-55.
DOI: 10.1016/0921-5107(94)90296-8
Google Scholar
[12]
R.R. Fahrtdinov, O.V. Feklisova, M.V. Grigoriev, D.V. Irzhak, D.V. Roshchupkin and E.B. Yakimov, X-ray beam induced current method at the laboratory x-ray source, Rev. Sci. Instrum. 82 (2011) 093702.
DOI: 10.1063/1.3633948
Google Scholar
[13]
C. Donolato, Theory of beam induced current characterization of grain boundaries in polycrystalline solar cells, J. Appl. Phys. 54 (1983) 1314-1322.
DOI: 10.1063/1.332205
Google Scholar
[14]
C. Donolato, Modeling the effect of dislocations on the minority carrier diffusion length of a semiconductor, J. Appl. Phys. 84 (1998) 2656-2664.
DOI: 10.1063/1.368378
Google Scholar
[15]
C. Donolato, A theoretical study of the charge collection contrast of localized semiconductor defects with arbitrary recombination activity, Semicond. Sci. Technol. 7 (1992), 37-43.
DOI: 10.1088/0268-1242/7/1/007
Google Scholar
[16]
C. Donolato, An Analytical Model of SEM and STEM Charge Collection Images of Dislocations in Thin Semiconductor Layers I. Minority Carrier Generation, Diffusion, and Collection, Phys. Stat. Sol. (a) 65 (1981) 649-658.
DOI: 10.1002/pssa.2210650231
Google Scholar
[17]
H-J. Fitting, H. Glaefeke and W. Wild, Electron Penetration and Energy Transfer in Solid Targets, Phys. Stat. Sol. (a) 43 (1977) 185-190.
DOI: 10.1002/pssa.2210430119
Google Scholar
[18]
T. Wilson and E.M. McCabe, Theory of optical beam induced current images of defects in semiconductors, J. App. Phys. 61 (1987) 191-195.
DOI: 10.1063/1.338853
Google Scholar
[19]
Ya.L. Shabelnikova and E.B. Yakimov, The generation rate of excess carriers induced by the focused x-ray beam, submitted to J. Surf. Investigat. X-ray, Synchrotr. Neutron Techniq. (2013).
Google Scholar
[20]
E.B. Yakimov, Simulation of XBIC Contrast of Precipitates in Si, Solid State Phenom. 156-158 (2010) 247-250.
DOI: 10.4028/www.scientific.net/ssp.156-158.247
Google Scholar
[21]
Ya.L. Shabel'nikova, E.B. Yakimov, M.V. Grigor'ev, R.R. Fahrtdinov and V.A. Bushuev, Calculating the Extended Defect Contrast for the X-ray_Beam_Induced Current Method, Technic. Phys. Lett. 38 (2012) 913–916.
DOI: 10.1134/s1063785012100239
Google Scholar
[22]
Ya.L. Shabel'nikova and E.B. Yakimov, Comparison between the EBIC and XBIC Contrasts of Dislocations and Grain Boundaries, J. Surf. Investigat. X-ray, Synchrotr. Neutron Techniq. 6 (2012) 894–896.
DOI: 10.1134/s1027451012110109
Google Scholar
[23]
I.E. Bondarenko and E.B. Yakimov, EBIC-investigation of the dislocation-impurity interaction in silicon, Solid State Phenom. 1&2 (1988) 59-64.
DOI: 10.4028/www.scientific.net/ssp.1-2.59
Google Scholar