Fast and Slow Vacancies in Silicon

Article Preview

Abstract:

Vacancies (and probably also self-interstitials) in silicon appear to exist in several forms (atomic configurations) some of them being fast diffusers and other slow diffusers. The data on enhanced self-diffusivity under proton irradiation, on vacancy and oxide precipitate profiles installed by Rapid Thermal Annealing, and on the self-diffusivity under equilibrium conditions suggest that there are at least two kinds of vacancy: 1) Vw - a fast-diffusing localized vacancy manifested in electron irradiated samples (Watkins vacancy), 2) Vs - a slow-diffusing extended vacancy manifested under hot proton irradiation. In RTA experiments, these two species behave as one equilibrated subsystem of a moderate effective diffusivity intermediate between those of Vw and Vs. There is also strong evidence in favor of a third kind of vacancy: Vf a fast extended species, which controls the grown-in voids in silicon crystals.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

157-162

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. D. Watkins, J. Phys. Soc. Japan, 18, 22 (1963).

Google Scholar

[2] G. D. Watkins, Material Science in Semiconductor Processing 3, 227 (2000).

Google Scholar

[3] G. D. Watkins, J. Appl. Phys. 103, 106106 (2008).

Google Scholar

[4] V. V. Voronkov, R. Falster, Materials Science and Engineering, B 134 227 (2006).

Google Scholar

[5] V. V. Voronkov, ECS Transactions 18, 945 (2009).

Google Scholar

[6] H. Bracht, J. Fage-Peterson, N. Zangenberg, A. Nylandsted-Larsen, E.E. Haller, G. Lilly, M. Posselt, Phys. Rev. Lett. 91, 245502-1 (2003).

Google Scholar

[7] V. V. Voronkov, R. Falster, Material Science in Semiconductor Processing, 15 697 (2012).

Google Scholar

[8] R. Falster, M. Pagani, D. Gambaro, M. Cornara, M. Olmo, G. Ferrero, P. Pichler and M. Jacob, Solid State Phenomena 57-58, 129 (1997).

DOI: 10.4028/www.scientific.net/ssp.57-58.129

Google Scholar

[9] R. Falster, V. V. Voronkov and F. Quast, Phys. Stat. Sol. B222, 219 (2000).

Google Scholar

[10] V. V. Voronkov and R. Falster, J. Appl. Phys. 91, 5802 (2002).

Google Scholar

[11] M. Akatsuka, M. Okui, K. Sueoka, Nuclear Instruments and Methods in Physics Research, B186, 45 (2002).

Google Scholar

[12] Y. Shimizu, M. Uematsu, K.M. Itoh, Phys. Rev. Lett. 98, 095901-1 (2007).

Google Scholar

[13] H. Bracht, E. E. Haller, R. Clark-Felps, Phys. Rev. Lett. 81, 393 (1998).

Google Scholar

[14] V. V. Voronkov, J. Crystal Growth 310, 1307 (2008).

Google Scholar

[15] H. Yamada-Kaneta, T. Goto, Y. Saito, Y. Nemoto, K. Sato, K. Kakimoto, S. Nakamura, Materials Sci. and Eng. B134, 240 (2006).

Google Scholar