Properties of Point Defects in Silicon: New Results after a Long-Time Debate

Article Preview

Abstract:

The contributions of vacancies and self-interstitials to silicon (Si) self-diffusion are a matter of debate since many years. These native defects are involved in dopant diffusion and the formation of defect clusters and thus influence many processes that take place during Si single crystal growth and the fabrication of silicon based electronic devices. Considering their relevance it is remarkable that present data about the properties of native point defects in Si are still limited and controversy. This work reports recent results on the properties of native point defects in silicon deduced from self-diffusion experiments below 850°C. The temperature dependence of silicon self-diffusion is accurately described by contributions due to vacancies and self-interstitials assuming temperature dependent vacancy properties. The concept of vacancies whose thermodynamic properties change with temperature solves the inconsistency between self-and dopant diffusion in Si but further experiments are required to verify this concept and to prove its relevance for other material systems.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

151-156

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.F. Peart, Phys. Status Solidi 15 (1966) K119.

Google Scholar

[2] B.J. Masters and J. M. Fairfield, Appl. Phys. Lett. 8 (1966) 280.

Google Scholar

[3] J.M. Fairfield and B.J. Masters, J. Appl. Phys. 38 (1967) 3148.

Google Scholar

[4] R.N. Ghoshtagore, Phys. Rev. Lett. 16 (1966) 890.

Google Scholar

[5] H. Bracht, E.E. Haller, and R. Clark-Phelps, Phys. Rev. Lett. 81 (1998) 393.

Google Scholar

[6] A. Ural, P.B. Griffin, and J.D. Plummer, Phys. Rev. Lett. 83 (1999) 3454.

Google Scholar

[7] S.R. Aid, T. Sakaguchi, K. Toyonaga, Y. Nakabayashi, S. Matumoto, M. Sakuraba, Y. Shimamune, Y. Hashiba, J. Murota, K. Wada, T. Abe, Materials Science and Engineering B 114-115 (2004) 330.

DOI: 10.1016/j.mseb.2004.07.055

Google Scholar

[8] Y. Shimizu, M. Uematsu, and K.M. Itoh, Phys. Rev. Lett. 98 (2007) 095901.

Google Scholar

[9] H. Bracht, N.A. Stolwijk, and H. Mehrer, Phys. Rev. B 52 (1995) 16542.

Google Scholar

[10] G.D. Watkins, Mater. Res. Soc. Symp. Proc. 469 (1997) 139.

Google Scholar

[11] G.D. Watkins, J. Appl. Phys. 103 (2008) 106106.

Google Scholar

[12] H. Bracht and A. Chroneos, J. Appl. Phys. 104 (2008) 076108.

Google Scholar

[13] F. Bruneval, Phys. Rev. Lett. 108 (2012) 256403.

Google Scholar

[14] R. Kube, H. Bracht, E. Hüger, H. Schmidt, J. Lundsgaard Hansen, A. Nylandsted Larsen, J.W. Ager III, E.E. Haller, T. Geue, and J. Stahn, submitted to Physical Review B (2013).

DOI: 10.1103/physrevb.88.085206

Google Scholar

[15] A. Seeger and K.P. Chik, Phys. Stat. Sol. 29 (1968) 455.

Google Scholar

[16] N.A. Stolwijk, B. Schuster, and J. Hölzl, Appl. Phys. A 33 (1984) 133.

Google Scholar

[17] N.A. Stolwijk, J. Hölzl, W. Frank, E.R. Weber, and H. Mehrer, Appl. Phys. A 39 (1986) 37.

Google Scholar

[18] A. Giese, H. Bracht, N.A. Stolwijk, and D. Baither, Materials Science and Engineering B 71 (2000) 160.

Google Scholar

[19] K. Compaan and Y. Haven, Trans. Faraday Soc. 52 (1956) 786.

Google Scholar

[20] K. Compaan and Y. Haven, Trans. Faraday Soc. 54 (1958) 1498.

Google Scholar

[21] M. Posselt, F. Gao, and H. Bracht, Phys. Rev. B 78 (2008) 035208.

Google Scholar

[22] P. Fahey, S.S. Iyer, and G.J. Scilla, Appl. Phys. Lett. 54 (1989) 843.

Google Scholar

[23] A. Nylandsted Larsen and P. Kringhøj, Appl. Phys. Lett. 68 (1996) 2684.

Google Scholar

[24] A. Nylandsted Larsen, P. Kringhøj, J. Lundsgaard Hansen, and S.Y. Shiryaev, J. Appl. Phys. 81 (1997) 2173.

Google Scholar

[25] Y. Zhao, M.J. Aziz, H. -J. Gossmann, S. Mitha, D. Schiferl, Appl. Phys. Lett. 75 (199) 941.

Google Scholar

[26] A. Nylandsted Larsen, N. Zangenberg, and J. Fage-Pedersen, Materials Science and Engineering B 124-125 (2005) 241.

Google Scholar

[27] P. Kringhøj and A. Nylandsted Larsen, Phys. Rev. B 56 (1997) 6396.

Google Scholar

[28] N.E.B. Cowern, S. Simdyankin, C. Ahn, N.S. Bennett, J.P. Goss, J. -M. Hartmann, A. Pakfar, S. Hamm, J. Valentin, E. Napolitani, D. De Salvador, E. Bruno, and S. Mirabella, Phys. Rev. Lett. 110 (2013) 155501.

DOI: 10.1103/physrevlett.110.155501

Google Scholar

[29] E. Hüger, U. Tietze, D. Lott, H. Bracht, D. Bougeard, E.E. Haller, and H. Schmidt, Appl. Phys. Lett. 93 (2008) 162104.

DOI: 10.1063/1.3002294

Google Scholar

[30] M. Werner, H. Mehrer, and H. D. Hochheimer, Phys. Rev. B 32 (1985) 3930.

Google Scholar

[31] S. Brotzmann, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E. Simoen, E.E. Haller, J.S. Christensen, and P. Werner, Phys. Rev. B. 77 (2008) 235207.

DOI: 10.1103/physrevb.77.235207

Google Scholar

[32] M. Naganawa, Y. Shimizu, M. Uematsu, K.M. Itoh, K. Sawano, Y. Shiraki, and E.E. Haller, Appl. Phys. Lett. 93 (2008) 191905.

DOI: 10.1063/1.3025892

Google Scholar

[33] Chroneos, H. Bracht, R.W. Grimes, and B.P. Uberuaga, Appl. Phys. Lett. 92 (2008) 172103.

DOI: 10.1063/1.2918842

Google Scholar

[34] A. Chroneos, R.W. Grimes, B.P. Uberuaga, and H. Bracht, Phys. Rev. B. 77 (2008) 235208.

Google Scholar

[35] S. Schneider, H. Bracht, J. N. Klug, J. Lundsgaard Hansen, A. Nylandsted Larsen, D. Bougeard, and E. E. Haller, Phys. Rev. B 87 (2013) 115202.

Google Scholar

[36] S. Mirabella, D. De Salvador, E. Napolitani, E. Bruno, and F. Priolo, J. Appl. Phys. 113 (2013) 031101.

Google Scholar