The Trivacancy and Trivacancy-Oxygen Family of Defects in Silicon

Article Preview

Abstract:

The data obtained recently from combined deep-level-transient spectroscopy (DLTS), local vibrational mode (LVM) spectroscopy and ab-initio modeling studies on structure, electronic properties, local vibrational modes, reconfiguration and diffusion paths and barriers for trivacancy (V3) and trivacancy-oxygen (V3O) defects in silicon are summarized. New experimental results on the introduction rates of the divacancy (V2) and trivacancy upon 4 MeV electron irradiation and on the transformation of V3 from the fourfold coordinated configuration to the (110) planar one upon minority carrier injection are reported. Possible mechanisms of the transformation are considered and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

181-190

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ahmed, S.J. Watts, J. Matheson, and A. Holmes-Siedle, Deep-level transient spectroscopy studies of silicon detectors after 24 GeV proton irradiation and 1 MeV neutron irradiation, Nuclear Instruments and Methods in Physics Research A 457 (2001).

DOI: 10.1016/s0168-9002(00)00788-9

Google Scholar

[2] V.P. Markevich, A.R. Peaker, S.B. Lastovskii, L.I. Murin, J. Coutinho, V.J.B. Torres, P.R. Briddon, L. Dobaczewski, E.V. Monakhov, and B.G. Svensson, Trivacancy and trivacancy-oxygen complexes in silicon: Experiments and ab initio modeling, Phys. Rev. B 80 (2009).

DOI: 10.1103/physrevb.80.235207

Google Scholar

[3] R.M. Fleming, C.H. Seager, D.V. Lang, E. Bielejec, and J.M. Campbell, A bistable divacancylike defect in silicon damage cascades, J. Appl. Phys. 104 (2008) 083702-(1-10).

DOI: 10.1063/1.2991135

Google Scholar

[4] A. Junkes, I. Pintilie, E. Fretwurst, and D. Eckstein, A contribution to the identification of the E5 defect level as tri-vacancy (V3), Physica B 407 (2012) 3013-3015.

DOI: 10.1016/j.physb.2011.08.090

Google Scholar

[5] V.P. Markevich, A.R. Peaker, S.B. Lastovskii, L.I. Murin, J. Coutinho, A.V. Markevich, V.J.B. Torres, P.R. Briddon, L. Dobaczewski, E.V. Monakhov, and B.G. Svensson, Trivacancy in silicon: A combined DLTS and ab initio modeling study, Physica B 404 (2009).

DOI: 10.1016/j.physb.2009.08.142

Google Scholar

[6] V.P. Markevich, A.R. Peaker, B. Hamilton, S.B. Lastovskii, L.I. Murin, J. Coutinho, V.J.B. Torres, P.R. Briddon, L. Dobaczewski, and B.G. Svensson, Structure and electronic properties of trivacancy and trivacancy-oxygen complexes in silicon, Phys. Status Solidi A 208 (2011).

DOI: 10.1002/pssa.201000265

Google Scholar

[7] Y-H. Lee, J.W. Corbett, EPR study of defects in neutron-irradiated silicon: Quenched-in alignment under <110> uniaxial stress, Phys. Rev. B 9 (1974) 4351-4361.

DOI: 10.1103/physrevb.9.4351

Google Scholar

[8] J.L. Hastings, S.K. Estreicher, and P.A. Fedders, Vacancy aggregates in silicon, Phys. Rev. B 56 (1997) 10215-10220.

DOI: 10.1103/physrevb.56.10215

Google Scholar

[9] D.V. Makhov, L.J. Lewis, Stable fourfold configurations for small vacancy clusters in silicon from ab initio calculations, Phys. Rev. Lett. 92 (2004) 255504-(1-4).

DOI: 10.1103/physrevlett.92.255504

Google Scholar

[10] J.H. Bleka, E.V. Monakhov, B.G. Svensson, and B.S. Avset, Room-temperature annealing of vacancy-type defect in high-purity n-type Si, Phys. Ref. B 76 (2007) 233204-(1-3).

DOI: 10.1103/physrevb.76.233204

Google Scholar

[11] J. Coutinho, V.P. Markevich, A.R. Peaker, B. Hamiton, S.B. Lastovskii, L.I. Murin, B.G. Svensson, M.J. Rayson, and P.R. Briddon, Electronic and dynamical properties of the silicon trivacancy, Phys. Rev. B 86 (2012) 174101-(1-13).

DOI: 10.1103/physrevb.86.174101

Google Scholar

[12] V.P. Markevich, A.R. Peaker, B. Hamilton, S.B. Lastovskii, L.I. Murin, J. Coutinho, A.V. Markevich, M.J. Rayson, P.R. Briddon, and B.G. Svensson, Reconfigurations and diffusion of trivacancy in silicon, Physica B 407 (2012) 2974-2977.

DOI: 10.1016/j.physb.2011.08.001

Google Scholar

[13] L.I. Murin, B.G. Svensson, J.L. Lindstrom, V.P. Markevich, and C.A. Londos, Trivacancy-oxygen complex in Si: Local vibrational mode characterization, Physica B 404 (2009) 4568-4571.

DOI: 10.1016/j.physb.2009.08.144

Google Scholar

[14] L.I. Murin, B.G. Svensson, J.L. Lindstrom, V.P. Markevich, and C.A. Londos, Divacancy-oxygen and trivacancy-oxygen complex in silicon: Local Vibrational Mode studies, Solid State Phenomena 156-158 (2010) 129-134.

DOI: 10.4028/www.scientific.net/ssp.156-158.129

Google Scholar

[15] K.L. Brower, Structure of multiple-vacancy (oxygen) centers in irradiated silicon, Radiation Effects 8 (1971) 213-219.

DOI: 10.1080/00337577108231031

Google Scholar

[16] L. Dobaczewski, A.R. Peaker and K. Bonde Nielsen, Laplace-transform deep-level transient spectroscopy: The technique and its applications to the study of point defects in semiconductors, J. Appl. Phys. 96 (2004) 4689-4728.

DOI: 10.1063/1.1794897

Google Scholar

[17] M. Mikelsen, E.V. Monakhov, G. Alfieri, B.S. Avset, and B.G. Svensson, Kinetics of divacancy annealing and divacancy-oxygen formation in oxygen-enriched high-purity silicon, Phys. Rev. B 72 (2005) 195207-(1-6).

DOI: 10.1103/physrevb.72.195207

Google Scholar

[18] M.J. Rayson, P.R. Briddon, Rapid iterative method for electronic-structure eigenproblems using localized basis functions, Comp. Phys. Comm. 172 (2008) 128-134.

DOI: 10.1016/j.cpc.2007.08.007

Google Scholar

[19] J.P. Perdew, Y Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[20] C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space Gaussian potentials from H to Rn, Phys. Rev. B 58 (1998) 3641-3662.

DOI: 10.1103/physrevb.58.3641

Google Scholar

[21] G. Henkelman, B.P. Uberuaga, and H. Jonsson, A climibing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901-9904.

DOI: 10.1063/1.1329672

Google Scholar

[22] A. Carvalho, R. Jones, M. Sanati, S.K. Estreicher, J. Coutinho, and P.R. Briddon, First-principles investigation of a bistable boron-oxygen interstitial pair in Si, Phys. Rev. B 73 (2006) 245210-(1-7).

DOI: 10.1103/physrevb.73.245210

Google Scholar

[23] A. Carvalho, R. Jones, C. Janke, J.P. Goss, P.R. Briddon , J. Coutinho and S. Oberg, Self interstitial in germanium, Phys. Rev. Lett. 99 (2007) 175502-(1-4).

DOI: 10.1103/physrevlett.99.175502

Google Scholar

[24] L.C. Kimerling, Recombination enhanced defect reactions, Sol. St. Electronics 21 (1978) 1391-1401.

DOI: 10.1016/0038-1101(78)90215-0

Google Scholar

[25] D.V. Lang, Recombination-enhanced defect reactions in semiconductors, Ann. Rev. Mater. Sci. 12 (1982) 377-400.

Google Scholar

[26] J.D. Weeks, J.C. Tully, and L.C. Kimerling, Theory of recombination-enhanced defect reactions in semiconductors, Phys. Rev. B 12 (1985) 3286-3292.

DOI: 10.1103/physrevb.12.3286

Google Scholar

[27] J.C. Bourgoin, J.W. Corbett, A new mechanism for interstitial migration, Phys. Lett. A 38 (1972) 135-137.

Google Scholar

[28] J.C. Bourgoin, D. Peak, and J.W. Corbett, Ionization-enhanced diffusion: ion implantation in semiconductors, J. Appl. Phys. 44(1973) 3022-3027.

DOI: 10.1063/1.1662700

Google Scholar

[29] Y. Bar-Yam, J.D. Joannopoulos, Barrier to migration of silicon self-interstitial, Phys. Rev. Lett. 52 (1984) 1129-1132.

DOI: 10.1103/physrevlett.52.1129

Google Scholar

[30] S. Goedecker, T. Deutsch, and L. Billard, A fourfold coordinated point defect in silicon, Phys. Rev. Lett. 88 (2002) 235501-(1-4).

DOI: 10.1103/physrevlett.88.235501

Google Scholar