Isotope-Dependent Phonon Trapping at Defects in Semiconductors

Article Preview

Abstract:

Unexpectedly large isotope effects have been reported for the vibrational lifetimes of the H-C stretch mode of the CH2* defect in Si and the asymmetric stretch of interstitial O in Si as well. First-principles theory can explain these effects. The results imply that defects trap phonons for lengths of time that depend on the defect and sometimes on its isotopic composition. Some consequences of phonon trapping are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

209-212

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Peng, H. Zhang, M. Stavola, V. Yelundur, A. Rohatgi, L. Carnel, M. Seacrist, and J. Kalejs, J. Appl. Phys. 109 (2011) 053517.

DOI: 10.1063/1.3561367

Google Scholar

[2] P. Leary, R. Jones, and S. Őberg, Phys. Rev. B 57 (1998) 3887.

Google Scholar

[3] B. Hourahine, R. Jones, S. Őberg, P. R. Briddon, V. P. Markevich, R. C. Newman, J. Hermansson, M. Kleverman, J. L. Lindstrőm, L. I. Murin, N. Kukata, and M. Suezawa, Physica B 308–310 (2001) 197; Defects and Diff. Forum 221–223 (2003) 1.

DOI: 10.1016/s0921-4526(01)00719-0

Google Scholar

[4] J. L. McAfee and S. K. Estreicher, Physica B 340–342 (2003) 637.

Google Scholar

[5] T. M. Gibbons, S. K. Estreicher, K. Potter, F. Bekisli, and M. Stavola, Phys. Rev. B 87 (2013) 115207.

Google Scholar

[6] M. Stavola, S. K. Estreicher, and M. Seacrist, Sol. St. Phenom. (these proceedings).

Google Scholar

[7] M. Budde, G. Lűpke, E. Chen, X. Zhang, N. H. Tolk, L. C. Feldman, E. Tarhan, A. K. Ramdas, and M. Stavola, Phys. Rev. Lett. 87 (2001) 145501.

DOI: 10.1103/physrevlett.87.145501

Google Scholar

[8] B. Pajot in Oxygen in Semiconductors, ed. F. Shimura (Academic, Boston, 1994), p.161.

Google Scholar

[9] K. K. Kohli, G. Davies, N. Q. Vinh, D. West, S. K. Estreicher, T. Gregorkiewicz, and K. M. Itoh, Phys. Rev. Lett. 96, (2006) 225503.

Google Scholar

[10] F. Widulle, T. Ruf, M. Konuma, I. Silier, W. Kriegseis, M. Cardona, and V. I. Ozhogin, Sol. St. Commun. 118 (2001) 1.

DOI: 10.1016/s0038-1098(01)00014-x

Google Scholar

[11] S. K. Estreicher, T. M. Gibbons, By. Kang, and M. B. Bebek, Proceedings ICDS-(2013).

Google Scholar

[12] D. A. Drabold and S. K. Estreicher (editors), Theory of Defects in Semiconductors, vol. 104 in Topics in Applied Physics (Springer, Heidelberg, 2007).

Google Scholar

[13] M. Budde, G. Lüpke, C. Parks Cheney, N. H. Tolk, and L. C. Feldman, Phys. Rev. Lett. 85 (2000) 1452; G. Lüpke, N. H. Tolk, and L. C. Feldman, J. Appl. Phys. 93 (2003) 1.

DOI: 10.1103/physrevlett.85.1452

Google Scholar

[14] D. West and S. K. Estreicher, Phys. Rev. B 75 (2007) 075206.

Google Scholar

[15] H. Hellmann, Einführung in die Quantenchemie (Franz Deuticke, Leipzig, 1937) p.285; R. P. Feynman, Phys. Rev. 56 (1939) 340.

Google Scholar

[16] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48 (1982) 1425.

Google Scholar

[17] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45 (1980) 566.

Google Scholar

[18] S. Perdew and A. Zunger, Phys. Rev. B 23 (1981) 5048.

Google Scholar

[19] D. Sánchez-Portal, P. Ordejón, E. Artacho, and J. M. Soler, Int. J. Quantum Chem. 65 (1997) 453 (1997); E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J. M. Soler, Phys. Stat. Sol. B 215 (1999) 809.

DOI: 10.1103/physrevlett.83.3884

Google Scholar

[20] O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40 (1989) 3979; O. F. Sankey, D. J. Niklewski, D. A. Drabold, and J. D. Dow, Phys. Rev. B 41 (1990) 12750.

DOI: 10.1103/physrevb.41.12750

Google Scholar

[21] A. Nitzan and J. Jortner, Mol. Phys. 25 (1973) 713; A. Nitzan, S. Mukamel, and J. Jortner, J. Chem. Phys. 60 (1974) 3929.

Google Scholar

[22] S. A. Egorov and J. L. Skinner, J. Chem. Phys. 103 91995) 1533.

Google Scholar