[1]
L. I. Murin, E. A. Tolkacheva, V. P. Markevich, A. R. Peaker, B. Hamilton, E. Monakhov, B. G. Svensson, J. L. Lindström, P. Santos, J. Coutinho, and A. Carvalho, The oxygen dimer in Si: Its relationship to the light-induced degradation of Si solar cells?, Appl. Phys. Lett. 98 (2011).
DOI: 10.1063/1.3584138
Google Scholar
[2]
J. Adey, R. Jones, D.W. Palmer, P. R. Briddon, S. Öberg, Degradation of Boron-Doped Czochralski-Grown Silicon Solar Cells, Phys. Rev. Lett. 93 (2004) 055504.
DOI: 10.1103/physrevlett.93.169904
Google Scholar
[3]
Young Joo Lee, J. von Boehm, M. Pesola, R. M. Nieminen, First-principles study of migration, restructuring, and dissociation energies of oxygen complexes in silicon, Phys. Rev. B. 65 (2002) 085205.
DOI: 10.1103/physrevb.65.085205
Google Scholar
[4]
Shangyi Ma and Shaoqing Wang, Ab initio study of self-diffusion in silicon over a wide temperature range: Point defect states and migration mechanisms, Phys. Rev. B. 81 (2010) 193203.
DOI: 10.1103/physrevb.81.193203
Google Scholar
[5]
P. Hänggi, P. Talkner, M. Borcovec, Reaction-rate theory: fifty years after Kramers, Rev. Mod. Phys. 62, (1990) 251-338.
DOI: 10.1103/revmodphys.62.251
Google Scholar
[6]
Vasilii Gusakov, Unified model of diffusion of interstitial oxygen in silicon and germanium crystals, J Phys: Condens. Matter. 17 (2005) S2285- S2292.
DOI: 10.1088/0953-8984/17/22/017
Google Scholar
[7]
J. C. Mikkelsen, The Diffusivity and Solubility of Oxygen in Silicon, Matter. Res. Soc. Symp. Proc. 59 (1986) 19-38.
Google Scholar
[8]
V. V. Emtsev Jr., C. A. J. Ammerlaan, V. V. Emtsev, G. A. Oganesyan, B. A. Andreev, D. I. Kuritsyn, A. Misiuk, B. Surma and C. A. Londos, Double thermal donors in Czochralski-grown silicon heat-treated under atmospheric and high hydrostatic pressures, Phys. Stat. Sol. (b) 235 (2003).
DOI: 10.1002/pssb.200301534
Google Scholar
[9]
J. W. Corbett, R. S. McDonald, G. D. Watkins, The configuration and diffusion of isolated oxygen in silicon and germanium, J. Phys. Chem. Solids. 25 (1964) 873-879.
DOI: 10.1016/0022-3697(64)90100-3
Google Scholar
[10]
George D. Watkins, The vacancy in silicon: Identical diffusion properties at cryogenic and elevated temperatures, J. Appl. Phys. 103 (2008) 106106.
DOI: 10.1063/1.2937198
Google Scholar
[11]
V. P. Markevich, M. Suezawa, Hydrogen–oxygen interaction in silicon at around 50 °C, Appl. Phys. Lett. 83 (1998) 2988-2993.
DOI: 10.1063/1.367054
Google Scholar
[12]
D. A. Drabold, S. K. Estreicher, Theory of Defects in Semiconductors. Topics in Applied Physics Volume 104. Springer. Berlin, (2007).
Google Scholar
[13]
L. I. Murin, T. Hallberg, V. P. Markevich, J. L. Lindström, Experimental Evidence of the Oxygen Dimer in Silicon, Phys. Rev. Lett. 80 (1998) 93 - 96.
DOI: 10.1103/physrevlett.80.93
Google Scholar
[14]
Daisuke Tsurumi, Kohei M. Itoh, Hiroshi Yamada-Kaneta, Host-isotope effect on the localized vibrational modes of oxygen dimer in isotopically enriched silicon, Physica B. (376–377) 2006 959–962.
DOI: 10.1016/j.physb.2005.12.238
Google Scholar
[15]
Zhidan Zeng, J. D. Murphy, R. J. Falster, Xiangyang Ma, Deren Yang, and P. R. Wilshaw, The effect of impurity-induced lattice strain and Fermi level position on low temperature oxygen diffusion in silicon, J. Appl. Phys. 109 (2011) 063532.
DOI: 10.1063/1.3555625
Google Scholar
[16]
Nikolai Yarykin, Jorg Weber, DLTS study of the oxygen dimer formation kinetics in silicon, Physica 404 (2009) 4576-4578.
DOI: 10.1016/j.physb.2009.08.314
Google Scholar
[17]
Vasilii Gusakov, Quantumchemical simulation of diffusion in alloys: diffusion of interstitial oxygen atoms in Si1-xGex, Phys. Stat. Sol. (c) 8 (2011) 682-685.
DOI: 10.1002/pssc.201000225
Google Scholar
[18]
L. I. Khirunenko, Yu. V. Pomozov, M. G. Sosnin, A.V. Duvanskii, N.A. Sobolev, N.V. Abrosimov, H. Riemann, Oxygen Diffusion in Si1-xGex Alloys, Solid State Phenomena. 156-158 (2010) 181-186.
DOI: 10.1016/j.physb.2009.08.168
Google Scholar