First Principle Study of the Diffusion of Oxygen and Oxygen Complexes in Si, SiGe Solid Solutions and Si Nanocrystals

Article Preview

Abstract:

In the framework of a unified approach the diffusion coefficient (the prefactor and activation barrier) of an interstitial oxygen Oi, the hydrogen molecule H2, vacancy, oxygen dimer in silicon crystals and Oi in Si1-xGex solid solutions, silicon nanotubes and nanowires has been calculated. For all the above cases, the calculated values of the diffusion coefficient are in good agreement with the experimental data. The calculated equilibrium structures, electrical activity, the vibrational spectrum, the mechanism of diffusion of oxygen dimer fully describe the experimental results. Our study has revealed that the diffusivity of impurities (defects) in alloys can decrease considerably and this variation results from the fact that the prefactor depends on the concentration of component elements of the alloy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

171-180

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. I. Murin, E. A. Tolkacheva, V. P. Markevich, A. R. Peaker, B. Hamilton, E. Monakhov, B. G. Svensson, J. L. Lindström, P. Santos, J. Coutinho, and A. Carvalho, The oxygen dimer in Si: Its relationship to the light-induced degradation of Si solar cells?, Appl. Phys. Lett. 98 (2011).

DOI: 10.1063/1.3584138

Google Scholar

[2] J. Adey, R. Jones, D.W. Palmer, P. R. Briddon, S. Öberg, Degradation of Boron-Doped Czochralski-Grown Silicon Solar Cells, Phys. Rev. Lett. 93 (2004) 055504.

DOI: 10.1103/physrevlett.93.169904

Google Scholar

[3] Young Joo Lee, J. von Boehm, M. Pesola, R. M. Nieminen, First-principles study of migration, restructuring, and dissociation energies of oxygen complexes in silicon, Phys. Rev. B. 65 (2002) 085205.

DOI: 10.1103/physrevb.65.085205

Google Scholar

[4] Shangyi Ma and Shaoqing Wang, Ab initio study of self-diffusion in silicon over a wide temperature range: Point defect states and migration mechanisms, Phys. Rev. B. 81 (2010) 193203.

DOI: 10.1103/physrevb.81.193203

Google Scholar

[5] P. Hänggi, P. Talkner, M. Borcovec, Reaction-rate theory: fifty years after Kramers, Rev. Mod. Phys. 62, (1990) 251-338.

DOI: 10.1103/revmodphys.62.251

Google Scholar

[6] Vasilii Gusakov, Unified model of diffusion of interstitial oxygen in silicon and germanium crystals, J Phys: Condens. Matter. 17 (2005) S2285- S2292.

DOI: 10.1088/0953-8984/17/22/017

Google Scholar

[7] J. C. Mikkelsen, The Diffusivity and Solubility of Oxygen in Silicon, Matter. Res. Soc. Symp. Proc. 59 (1986) 19-38.

Google Scholar

[8] V. V. Emtsev Jr., C. A. J. Ammerlaan, V. V. Emtsev, G. A. Oganesyan, B. A. Andreev, D. I. Kuritsyn, A. Misiuk, B. Surma and C. A. Londos, Double thermal donors in Czochralski-grown silicon heat-treated under atmospheric and high hydrostatic pressures, Phys. Stat. Sol. (b) 235 (2003).

DOI: 10.1002/pssb.200301534

Google Scholar

[9] J. W. Corbett, R. S. McDonald, G. D. Watkins, The configuration and diffusion of isolated oxygen in silicon and germanium, J. Phys. Chem. Solids. 25 (1964) 873-879.

DOI: 10.1016/0022-3697(64)90100-3

Google Scholar

[10] George D. Watkins, The vacancy in silicon: Identical diffusion properties at cryogenic and elevated temperatures, J. Appl. Phys. 103 (2008) 106106.

DOI: 10.1063/1.2937198

Google Scholar

[11] V. P. Markevich, M. Suezawa, Hydrogen–oxygen interaction in silicon at around 50 °C, Appl. Phys. Lett. 83 (1998) 2988-2993.

DOI: 10.1063/1.367054

Google Scholar

[12] D. A. Drabold, S. K. Estreicher, Theory of Defects in Semiconductors. Topics in Applied Physics Volume 104. Springer. Berlin, (2007).

Google Scholar

[13] L. I. Murin, T. Hallberg, V. P. Markevich, J. L. Lindström, Experimental Evidence of the Oxygen Dimer in Silicon, Phys. Rev. Lett. 80 (1998) 93 - 96.

DOI: 10.1103/physrevlett.80.93

Google Scholar

[14] Daisuke Tsurumi, Kohei M. Itoh, Hiroshi Yamada-Kaneta, Host-isotope effect on the localized vibrational modes of oxygen dimer in isotopically enriched silicon, Physica B. (376–377) 2006 959–962.

DOI: 10.1016/j.physb.2005.12.238

Google Scholar

[15] Zhidan Zeng, J. D. Murphy, R. J. Falster, Xiangyang Ma, Deren Yang, and P. R. Wilshaw, The effect of impurity-induced lattice strain and Fermi level position on low temperature oxygen diffusion in silicon, J. Appl. Phys. 109 (2011) 063532.

DOI: 10.1063/1.3555625

Google Scholar

[16] Nikolai Yarykin, Jorg Weber, DLTS study of the oxygen dimer formation kinetics in silicon, Physica 404 (2009) 4576-4578.

DOI: 10.1016/j.physb.2009.08.314

Google Scholar

[17] Vasilii Gusakov, Quantumchemical simulation of diffusion in alloys: diffusion of interstitial oxygen atoms in Si1-xGex, Phys. Stat. Sol. (c) 8 (2011) 682-685.

DOI: 10.1002/pssc.201000225

Google Scholar

[18] L. I. Khirunenko, Yu. V. Pomozov, M. G. Sosnin, A.V. Duvanskii, N.A. Sobolev, N.V. Abrosimov, H. Riemann, Oxygen Diffusion in Si1-xGex Alloys, Solid State Phenomena. 156-158 (2010) 181-186.

DOI: 10.1016/j.physb.2009.08.168

Google Scholar