[1]
Fraunhofer ISE, Photovoltaics Report. (2012).
Google Scholar
[2]
SEMI, International Technology Roadmap for Photovoltaic (ITRPV) Results 2012, (2013).
Google Scholar
[3]
D. Macdonald, The emergence of n-type silicon for solar cell manufacture, in: Proceedings of the 50th Annual AuSES Conference (Solar 2012), Melbourne, Australia, (2012).
Google Scholar
[4]
J. Schmidt, B. Lim, D. Walter, K. Bothe, S. Gatz, T. Dullweber, et al., Impurity-Related Limitations of Next-Generation Industrial Silicon Solar Cells, IEEE Journal of Photovoltaics. (2012) 1–5.
DOI: 10.1109/jphotov.2012.2210030
Google Scholar
[5]
M. Kunst, G. Beck, The study of charge carrier kinetics in semiconductors by microwave conductivity measurements, Journal of Applied Physics. 60 (1986) 3558.
DOI: 10.1063/1.337612
Google Scholar
[6]
M. Kunst, G. Beck, The study of charge carrier kinetics in semiconductors by microwave conductivity measurements. II., Journal of Applied Physics. 63 (1988) 1093.
DOI: 10.1063/1.340013
Google Scholar
[7]
R.A. Sinton, Predicting multi-crystalline solar cell efficiency from life-time measured during cell fabrication, in: 3rd World Conference on Photovoltaic Energy Conversion, Osaka, 2003: p.1028–1031.
Google Scholar
[8]
J.S. Swirhun, R.A. Sinton, M.K. Forsyth, T. Mankad, Contactless measurement of minority carrier lifetime in silicon ingots and bricks, Progress in Photovoltaics: Research and Applications. 19 (2011) 313–319.
DOI: 10.1002/pip.1029
Google Scholar
[9]
M. Wilson, P. Edelman, J. Lagowski, S. Olibet, V. Mihailetchi, Improved QSS-μPCD measurement with quality of decay control: Correlation with steady-state carrier lifetime, Solar Energy Materials and Solar Cells. 106 (2012) 66–70.
DOI: 10.1016/j.solmat.2012.05.040
Google Scholar
[10]
K. Dornich, N. Schüler, B. Berger, J.R. Niklas, Fast, high resolution, inline contactless electrical semiconductor characterization for photovoltaic applications by microwave detected photoconductivity, Materials Science and Engineering: B. 178 (2013).
DOI: 10.1016/j.mseb.2012.11.014
Google Scholar
[11]
T. Trupke, R.A. Bardos, M.C. Schubert, W. Warta, Photoluminescence imaging of silicon wafers, Applied Physics Letters. 89 (2006) 044107.
DOI: 10.1063/1.2234747
Google Scholar
[12]
T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, Y. Uraoka, Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence, Applied Physics Letters. 86 (2005) 262108.
DOI: 10.1063/1.1978979
Google Scholar
[13]
P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta, Diffusion lengths of silicon solar cells from luminescence images, Journal of Applied Physics. 101 (2007) 123110.
DOI: 10.1063/1.2749201
Google Scholar
[14]
J.A. Giesecke, M. Kasemann, M.C. Schubert, P. Würfel, W. Warta, Separation of local bulk and surface recombination in crystalline silicon from luminescence reabsorption, Progress in Photovoltaics: Research and Applications. 18 (2010) 10–19.
DOI: 10.1002/pip.927
Google Scholar
[15]
B. Mitchell, T. Trupke, J.W. Weber, J. Nyhus, Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios, Journal of Applied Physics. 109 (2011) 083111–1–083111–12.
DOI: 10.1063/1.3575171
Google Scholar
[16]
E. Olsen, A.S. Flo̸, Spectral and spatially resolved imaging of photoluminescence in multicrystalline silicon wafers, Applied Physics Letters. 99 (2011) 011903.
DOI: 10.1063/1.3607307
Google Scholar
[17]
S. Herlufsen, K. Ramspeck, D. Hinken, A. Schmidt, J. Müller, K. Bothe, et al., Dynamic photoluminescence lifetime imaging for the characterisation of silicon wafers, Physica Status Solidi (RRL) - Rapid Research Letters. 5 (2011) 25–27.
DOI: 10.1002/pssr.201004426
Google Scholar
[18]
D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, G. Hahn, Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging, Journal of Applied Physics. 110 (2011) 054508.
DOI: 10.1063/1.3630031
Google Scholar
[19]
M.P. Peloso, B. Hoex, A.G. Aberle, Polarization analysis of luminescence for the characterization of silicon wafer solar cells, Applied Physics Letters. 98 (2011) 171914.
DOI: 10.1063/1.3584857
Google Scholar
[20]
D. Hinken, C. Schinke, S. Herlufsen, A. Schmidt, K. Bothe, R. Brendel, Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers., The Review of Scientific Instruments. 82 (2011).
DOI: 10.1063/1.3541766
Google Scholar
[21]
T. Trupke, J. Nyhus, R.A. Sinton, J.W. Weber, Photoluminescence Imaging on Silicon Bricks, in: Proceedings of the 24th European Photovoltaic Conference, Hamburg, (2009).
Google Scholar
[22]
S. Bowden, A. Sinton, Determining lifetime in silicon blocks and wafers with accurate expressions for carrier density, Journal of Applied Physics. 102 (2007) 124501–1–124501–7.
DOI: 10.1063/1.2818371
Google Scholar
[23]
B. Mitchell, J.W. Weber, D. Walter, D. Macdonald, T. Trupke, On the method of photoluminescence spectral intensity ratio imaging of silicon bricks : advances and limitations, Journal of Applied Physics. 112 (2012) 063116–1–063116–13.
DOI: 10.1063/1.4752409
Google Scholar
[24]
M.A. Green, Analytical expressions for spectral composition of band photoluminescence from silicon wafers and bricks, Applied Physics Letters. 99 (2011) 123110–1–123110–13.
DOI: 10.1063/1.3645636
Google Scholar
[25]
D. Walter, A. Liu, E. Franklin, D. Macdonald, B. Mitchell, T. Trupke, Contrast Enhancement of Luminescence Images via Point-Spread Deconvolution, in: IEEE 38th Photovoltaic Specialists Conference, (2012).
DOI: 10.1109/pvsc.2012.6317624
Google Scholar
[26]
B. Mitchell, J. Greulich, T. Trupke, Quantifying the effect of minority carrier diffusion and free carrier absorption on photoluminescence bulk lifetime imaging of silicon bricks, Solar Energy Materials and Solar Cells. 107 (2012) 75–80.
DOI: 10.1016/j.solmat.2012.07.022
Google Scholar
[27]
S. Johnston, F. Yan, M. Al-Jassim, Quality Characterization of Silicon Bricks using Photoluminescence Imaging and Photoconductive Decay, 38th IEEE Photovoltaic Specialists Conference. (2012) 2–6.
DOI: 10.1109/pvsc.2012.6317645
Google Scholar
[28]
G. Zoth, W. Bergholz, A fast, preparation-free method to detect iron in silicon, Journal of Applied Physics. 67 (1990) 6764.
DOI: 10.1063/1.345063
Google Scholar
[29]
L. Kimerling, Electronically controlled reactions of interstitial iron in silicon, Physica B+ C. 116 (1983) 297–300.
DOI: 10.1016/0378-4363(83)90263-2
Google Scholar
[30]
D. Macdonald, J. Tan, T. Trupke, Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence, Journal of Applied Physics. 103 (2008).
DOI: 10.1063/1.2903895
Google Scholar
[31]
B. Mitchell, H. Wagner, P.P. Altermatt, T. Trupke, Predicting Solar Cell Efficiencies from Bulk Lifetime Images of Multicrystalline Silicon Bricks, in: Proceedings of the 3rd SiliconPV Conference, Hamelin, Germany, (2013).
DOI: 10.1016/j.egypro.2013.07.261
Google Scholar
[32]
B. Mitchell, M. Juhl, M.A. Green, T. Trupke, Full Spectrum Photoluminescence Lifetime Analyses on Silicon Bricks, IEEE Journal of Photovoltaics. (in press) (2013).
DOI: 10.1109/jphotov.2013.2259894
Google Scholar
[33]
P. Würfel, S. Finkbeiner, E. Daub, Generalized Planck's radiation law for luminescence via indirect transitions, Applied Physics A: Materials Science & Processing. 60 (1995) 67–70.
DOI: 10.1007/bf01577615
Google Scholar
[34]
E. Daub, P. Würfel, Ultralow values of the absorption coefficient of Si obtained from luminescence, Physical Review Letters. 74 (1995) 1020–1023.
DOI: 10.1103/physrevlett.74.1020
Google Scholar
[35]
E. Daub, P. Würfel, Ultra-low values of the absorption coefficient for band–band transitions in moderately doped Si obtained from luminescence, Journal of Applied Physics. 80 (1996) 5325–5331.
DOI: 10.1063/1.363471
Google Scholar