Photoluminescence Imaging of Silicon Bricks

Article Preview

Abstract:

Photoluminescence imaging techniques have recently been extended to silicon bricks for early production quality control and electronic characterisation in photovoltaics and microelectronics. This contribution reviews the state of the art of this new method which is fundamentally based on spectral luminescence analyses. We present highly resolved bulk lifetime images that can be rapidly extracted from the side faces of directionally solidified or Czochralski grown silicon bricks. It is discussed how detailed physical modelling and experimental verification give good confidence of the best practice measurement errors. It is also demonstrated that bulk lifetime imaging can further be used for doping and interstitial iron concentration imaging. Additionally, we show that full spectrum measurements allow verification of the luminescence modelling and are, when fitted to the theory, another accurate method of extracting the absolute bulk lifetime.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

118-127

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fraunhofer ISE, Photovoltaics Report. (2012).

Google Scholar

[2] SEMI, International Technology Roadmap for Photovoltaic (ITRPV) Results 2012, (2013).

Google Scholar

[3] D. Macdonald, The emergence of n-type silicon for solar cell manufacture, in: Proceedings of the 50th Annual AuSES Conference (Solar 2012), Melbourne, Australia, (2012).

Google Scholar

[4] J. Schmidt, B. Lim, D. Walter, K. Bothe, S. Gatz, T. Dullweber, et al., Impurity-Related Limitations of Next-Generation Industrial Silicon Solar Cells, IEEE Journal of Photovoltaics. (2012) 1–5.

DOI: 10.1109/jphotov.2012.2210030

Google Scholar

[5] M. Kunst, G. Beck, The study of charge carrier kinetics in semiconductors by microwave conductivity measurements, Journal of Applied Physics. 60 (1986) 3558.

DOI: 10.1063/1.337612

Google Scholar

[6] M. Kunst, G. Beck, The study of charge carrier kinetics in semiconductors by microwave conductivity measurements. II., Journal of Applied Physics. 63 (1988) 1093.

DOI: 10.1063/1.340013

Google Scholar

[7] R.A. Sinton, Predicting multi-crystalline solar cell efficiency from life-time measured during cell fabrication, in: 3rd World Conference on Photovoltaic Energy Conversion, Osaka, 2003: p.1028–1031.

Google Scholar

[8] J.S. Swirhun, R.A. Sinton, M.K. Forsyth, T. Mankad, Contactless measurement of minority carrier lifetime in silicon ingots and bricks, Progress in Photovoltaics: Research and Applications. 19 (2011) 313–319.

DOI: 10.1002/pip.1029

Google Scholar

[9] M. Wilson, P. Edelman, J. Lagowski, S. Olibet, V. Mihailetchi, Improved QSS-μPCD measurement with quality of decay control: Correlation with steady-state carrier lifetime, Solar Energy Materials and Solar Cells. 106 (2012) 66–70.

DOI: 10.1016/j.solmat.2012.05.040

Google Scholar

[10] K. Dornich, N. Schüler, B. Berger, J.R. Niklas, Fast, high resolution, inline contactless electrical semiconductor characterization for photovoltaic applications by microwave detected photoconductivity, Materials Science and Engineering: B. 178 (2013).

DOI: 10.1016/j.mseb.2012.11.014

Google Scholar

[11] T. Trupke, R.A. Bardos, M.C. Schubert, W. Warta, Photoluminescence imaging of silicon wafers, Applied Physics Letters. 89 (2006) 044107.

DOI: 10.1063/1.2234747

Google Scholar

[12] T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, Y. Uraoka, Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence, Applied Physics Letters. 86 (2005) 262108.

DOI: 10.1063/1.1978979

Google Scholar

[13] P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta, Diffusion lengths of silicon solar cells from luminescence images, Journal of Applied Physics. 101 (2007) 123110.

DOI: 10.1063/1.2749201

Google Scholar

[14] J.A. Giesecke, M. Kasemann, M.C. Schubert, P. Würfel, W. Warta, Separation of local bulk and surface recombination in crystalline silicon from luminescence reabsorption, Progress in Photovoltaics: Research and Applications. 18 (2010) 10–19.

DOI: 10.1002/pip.927

Google Scholar

[15] B. Mitchell, T. Trupke, J.W. Weber, J. Nyhus, Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios, Journal of Applied Physics. 109 (2011) 083111–1–083111–12.

DOI: 10.1063/1.3575171

Google Scholar

[16] E. Olsen, A.S. Flo̸, Spectral and spatially resolved imaging of photoluminescence in multicrystalline silicon wafers, Applied Physics Letters. 99 (2011) 011903.

DOI: 10.1063/1.3607307

Google Scholar

[17] S. Herlufsen, K. Ramspeck, D. Hinken, A. Schmidt, J. Müller, K. Bothe, et al., Dynamic photoluminescence lifetime imaging for the characterisation of silicon wafers, Physica Status Solidi (RRL) - Rapid Research Letters. 5 (2011) 25–27.

DOI: 10.1002/pssr.201004426

Google Scholar

[18] D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, G. Hahn, Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging, Journal of Applied Physics. 110 (2011) 054508.

DOI: 10.1063/1.3630031

Google Scholar

[19] M.P. Peloso, B. Hoex, A.G. Aberle, Polarization analysis of luminescence for the characterization of silicon wafer solar cells, Applied Physics Letters. 98 (2011) 171914.

DOI: 10.1063/1.3584857

Google Scholar

[20] D. Hinken, C. Schinke, S. Herlufsen, A. Schmidt, K. Bothe, R. Brendel, Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers., The Review of Scientific Instruments. 82 (2011).

DOI: 10.1063/1.3541766

Google Scholar

[21] T. Trupke, J. Nyhus, R.A. Sinton, J.W. Weber, Photoluminescence Imaging on Silicon Bricks, in: Proceedings of the 24th European Photovoltaic Conference, Hamburg, (2009).

Google Scholar

[22] S. Bowden, A. Sinton, Determining lifetime in silicon blocks and wafers with accurate expressions for carrier density, Journal of Applied Physics. 102 (2007) 124501–1–124501–7.

DOI: 10.1063/1.2818371

Google Scholar

[23] B. Mitchell, J.W. Weber, D. Walter, D. Macdonald, T. Trupke, On the method of photoluminescence spectral intensity ratio imaging of silicon bricks : advances and limitations, Journal of Applied Physics. 112 (2012) 063116–1–063116–13.

DOI: 10.1063/1.4752409

Google Scholar

[24] M.A. Green, Analytical expressions for spectral composition of band photoluminescence from silicon wafers and bricks, Applied Physics Letters. 99 (2011) 123110–1–123110–13.

DOI: 10.1063/1.3645636

Google Scholar

[25] D. Walter, A. Liu, E. Franklin, D. Macdonald, B. Mitchell, T. Trupke, Contrast Enhancement of Luminescence Images via Point-Spread Deconvolution, in: IEEE 38th Photovoltaic Specialists Conference, (2012).

DOI: 10.1109/pvsc.2012.6317624

Google Scholar

[26] B. Mitchell, J. Greulich, T. Trupke, Quantifying the effect of minority carrier diffusion and free carrier absorption on photoluminescence bulk lifetime imaging of silicon bricks, Solar Energy Materials and Solar Cells. 107 (2012) 75–80.

DOI: 10.1016/j.solmat.2012.07.022

Google Scholar

[27] S. Johnston, F. Yan, M. Al-Jassim, Quality Characterization of Silicon Bricks using Photoluminescence Imaging and Photoconductive Decay, 38th IEEE Photovoltaic Specialists Conference. (2012) 2–6.

DOI: 10.1109/pvsc.2012.6317645

Google Scholar

[28] G. Zoth, W. Bergholz, A fast, preparation-free method to detect iron in silicon, Journal of Applied Physics. 67 (1990) 6764.

DOI: 10.1063/1.345063

Google Scholar

[29] L. Kimerling, Electronically controlled reactions of interstitial iron in silicon, Physica B+ C. 116 (1983) 297–300.

DOI: 10.1016/0378-4363(83)90263-2

Google Scholar

[30] D. Macdonald, J. Tan, T. Trupke, Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence, Journal of Applied Physics. 103 (2008).

DOI: 10.1063/1.2903895

Google Scholar

[31] B. Mitchell, H. Wagner, P.P. Altermatt, T. Trupke, Predicting Solar Cell Efficiencies from Bulk Lifetime Images of Multicrystalline Silicon Bricks, in: Proceedings of the 3rd SiliconPV Conference, Hamelin, Germany, (2013).

DOI: 10.1016/j.egypro.2013.07.261

Google Scholar

[32] B. Mitchell, M. Juhl, M.A. Green, T. Trupke, Full Spectrum Photoluminescence Lifetime Analyses on Silicon Bricks, IEEE Journal of Photovoltaics. (in press) (2013).

DOI: 10.1109/jphotov.2013.2259894

Google Scholar

[33] P. Würfel, S. Finkbeiner, E. Daub, Generalized Planck's radiation law for luminescence via indirect transitions, Applied Physics A: Materials Science & Processing. 60 (1995) 67–70.

DOI: 10.1007/bf01577615

Google Scholar

[34] E. Daub, P. Würfel, Ultralow values of the absorption coefficient of Si obtained from luminescence, Physical Review Letters. 74 (1995) 1020–1023.

DOI: 10.1103/physrevlett.74.1020

Google Scholar

[35] E. Daub, P. Würfel, Ultra-low values of the absorption coefficient for band–band transitions in moderately doped Si obtained from luminescence, Journal of Applied Physics. 80 (1996) 5325–5331.

DOI: 10.1063/1.363471

Google Scholar