Anisotropy of the Porous Layer Formation Rate in Silicon with Various Acceptor Concentrations

Article Preview

Abstract:

The orientation dependence of porous Si formation rate has been studied by local anodization of p-Si wafers with a boron concentration NB = 3·1015 - 2·1019 cm-3 at various currents with the help of a wagon wheel technique. It is demonstrated that the etch rate diagram is drastically transformed as the dopant concentration in p-Si is changed. The highest etch rate is observed in the <100> direction for heavily doped p++-Si, whereas for p+-Si with NB < 2·1018 cm-3, <111> axis becomes the fastest direction. Further decrease in the doping level makes the anisotropy weaker, and at NB <2·1016cm-3, the anodization rate becomes nearly independent of the crystallographic orientation. For all the impurity concentrations in the substrate, the anisotropy is the strongest in the case of anodization at low currents and gradually decreases with increasing current density.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

370-375

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.G. Zhang, S.D. Collins, R.L. Smith, J. Electrochem. Soc. 136 (5) (1989) 1561-1565.

Google Scholar

[2] V. Lehmann, Electrochemistry of Silicon, Germany: Wiley – VCH, (2002).

Google Scholar

[3] H. Foll, M. Christophersen, J. Carstensen and G. Hasse, Mater. Sci. Eng. R 39 (2002) 93-141.

Google Scholar

[4] M. Born and E. Wolf, Principles of optics, Cambridge University Press, United Kingdom, (1999).

Google Scholar

[5] N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Yu. Timoshenko, M. Fujii, Phys. Rev. B 71 (2005) 195304.

Google Scholar

[6] S. Shichi, M. Fujii, T. Nishida, H. Yasuda, K. Imakita, S. Hayashi, J. Appl. Phys. 111 (2012) 084303.

Google Scholar

[7] F. Genereux, S.W. Leonard, H.M. van Driel, A. Birner, U. Gösele, Phys. Rev. B 63 (2001) 161101 (R).

Google Scholar

[8] A. Halimaoui. Chapter 1. 2. Porous silicon formation by anodisation. in Properties of porous silicon, ed. by L. Canham, Inspec, The Institution of Electrical Engineers London, (1997).

Google Scholar

[9] E.V. Astrova, V.P. Ulin, Yu.A. Zharova, I.L. Shul'pina, A.V. Nashchekin, J. Electrochem. Soc. 159 (2012) D172-D180.

DOI: 10.1149/2.095203jes

Google Scholar

[10] E.V. Astrova, Y.A. Zharova, Nanoscale Res. Lett. 7 (2012) 421.

Google Scholar

[11] E.V. Astrova, Yu.A. Zharova, V.P. Ulin, G.V. Enicheva,. Phys. Status Solidi A 210 (2013) 723-727.

DOI: 10.1002/pssa.201200472

Google Scholar

[12] L.A. Golovan', P.K. Kashkarov, V. Yu. Timoshenko, Crystallography Reports 52 (2007) 672- 685.

Google Scholar

[13] N.A. Piskunov, S.V. Zabotnov, D.A. Mamichev, L.A. Golovan', V. Yu. Timoshenko, P.K. Kashkarov, Crystallography Reports 52 (2007) 686-690.

DOI: 10.1134/s1063774507040165

Google Scholar