Characterization of Electrical Contacts on Silicon (100) after Ablation and Sulfur Doping by Femtosecond Laser Pulses

Article Preview

Abstract:

This paper investigates the influence of different number of laser pulses on contact behavior and conductivity of the surface layer of femtosecond laser microstructured, sulfur-doped silicon. Single shot laser processed silicon (Pink Silicon) is characterized by low surface roughness, whereas five shot laser processed silicon (Grey Silicon) has an elevated sulfur content with a surface roughness low enough to maintain good contacting. To laterally confine the laser induced pn-junction part of the Grey Silicon sample surface is etched off. The etching depth is confirmed to be sufficient to completely remove the active n-type sulfur layer. While Pink Silicon shows little or no lateral conductivity within the laser processed layer, Grey Silicon offers acceptable conductivity, just as expected by the fact of having incorporated a higher sulfur dopant content. Recombination dominates the irradiated regions of Pink Silicon and suppresses excess charge carrier collection. Grey Silicon, while showing sufficient lateral conductivity, still shows regions of lower conductivity, most likely dominated by the laser irradiation-induced formation of dislocations. According to our results, the optimum laser pulse number for electrical and structural properties is expected to be in the range between one and five laser pulses.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

358-363

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.G. Grimmeiss, E. Janzén, B. Skarstam, Deep sulfur-related centers in silicon, J. Appl. Phys. 51 (1980) 4212–4217.

DOI: 10.1063/1.328279

Google Scholar

[2] C.H. Crouch, J.E. Carey, M. Shen, E. Mazur, F.Y. Génin, Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation, Appl. Phys. A: Mat. Sci. Process. 79 (2004) 1635-1641.

DOI: 10.1007/s00339-004-2676-0

Google Scholar

[3] M.T. Winkler, D. Recht, M. -J. Sher, A.J. Said, E. Mazur, M.J. Aziz, Insulator-to-Metal Transition in Sulfur-Doped Silicon, Phys. Rev. Lett. 106 (2011) 178701.

DOI: 10.1103/physrevlett.106.178701

Google Scholar

[4] R. Younkin, J.E. Carey, E. Mazur, J.A. Levinson, C.M. Friend, Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses, J. Appl. Phys. 93 (2003) 2626-2629.

DOI: 10.1063/1.1545159

Google Scholar

[5] A.L. Baumann, K. -M. Guenther, P. Saring, T. Gimpel, S. Kontermann, M. Seibt, W. Schade, Tailoring the Absorption Properties of Black Silicon, Energy Procedia 27 (2012) 480–484.

DOI: 10.1016/j.egypro.2012.07.097

Google Scholar

[6] T. Gimpel, I. Höger, F. Falk, W. Schade, S. Kontermann, Electron backscatter diffraction on femtosecond laser sulfur hyperdoped silicon, Appl. Phys. Lett 101 (2012) 111911–3.

DOI: 10.1063/1.4752454

Google Scholar

[7] J. Jia, M. Li, C.V. Thompson, Amorphization of silicon by femtosecond laser pulses, Applied Physics Letters 84 (2004) 3205-3207.

DOI: 10.1063/1.1719280

Google Scholar

[8] M.T. Winkler, M. -J. Sher, Y. -T. Lin, M.J. Smith, H. Zhang, S. Gradecak, E. Mazur, Studying femtosecond-laser hyperdoping by controlling surface morphology, J. Appl. Phys. 111 (2012) 93511.

DOI: 10.1063/1.4709752

Google Scholar

[9] M. A. Falkenberg, H. Schuhmann, M. Seibt, and V. Radisch, Localization and preparation of recombination-active extended defects for transmission electron microscopy analysis, Rev. Sci. Instrum. 81, 063705–063705-6 (2010).

DOI: 10.1063/1.3443573

Google Scholar

[10] P. Saring, A.L. Baumann, B. Schlieper-Ludewig, S. Kontermann, W. Schade, M. Seibt: submitted to Applied Physics Letters (2013).

DOI: 10.1063/1.4817726

Google Scholar

[11] V. Kveder, M. Badylevich, W. Schröter, M. Seibt, E. Steinman, and A. Izotov, Silicon light-emitting diodes based on dislocation-related luminsecence, Phys. Stat. Sol. (A) 202 (2005) 901-910.

DOI: 10.1002/pssa.200460512

Google Scholar