[1]
C.A. Mack, Fifty Years of Moore's Law, IEEE Transactions on Semiconductor Manufacturing 24 (2) (2011) 202-207.
Google Scholar
[2]
L.B. Kish, End of Moore's Law: thermal (noise) death of integration in micro and nano elecronics, Phys. Lett. A 305 (3-4) (2002) 144-149.
DOI: 10.1016/s0375-9601(02)01365-8
Google Scholar
[3]
T. Okada, R. Takeda, H. Kubota, Y. Matsushita, Surface roughness scattering model developments for p-MOS Monte Carlo tool and mobility discussion about wafer orientation/morphology, Proc. 12th Int. Workshop Computational Electronics (IWCE) (2007).
Google Scholar
[4]
M.V. Fischetti, S.E. Laux, Monte Carlo study of electron transport in silicon inversion layers, Phys. Rev. B 48 (1993) 2244.
DOI: 10.1103/physrevb.48.2244
Google Scholar
[5]
T. Hamada, A. Teramoto, H. Akahori, K. Nii, T. Suwa, M. Hirayama, T. Ohmi, High Performance Low Noise CMOS Fabricated on Flattened (110) oriented Si Substrate, IEICE Tech. Rep. ED 104 (153) (2004) 41-44.
DOI: 10.1109/iedm.2003.1269401
Google Scholar
[6]
R. Hasunuma, J. Okamoto, N. Tokuda, K. Yamabe, Nonuniformity in Ultrathin SiO2 on Si(111) Characterized by Conductive Atomic Force Microscopy, Jpn. J. Appl. Phys. 43 (2004) 7861-7865.
DOI: 10.1143/jjap.43.7861
Google Scholar
[7]
L. Zhong, H. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, J. Yoshikawa, Evidence of spontaneous formation of steps on silicon (100), Phys. Rev. B 54 (1996) R2304-R2307.
DOI: 10.1103/physrevb.54.r2304
Google Scholar
[8]
L. Zhong, H. Hojo, Y. Aiba, K. Chaki, J. Yoshikawa, K. Hayashi, Atomic steps on silicon (001) surface tilted toward an arbitrary direction, Appl. Phys. Lett. 68 (13) (1996) 1823-1825.
DOI: 10.1063/1.116025
Google Scholar
[9]
H. Tokumoto, Y. Morita, Structure of Hydrogen-Passivated Si surfaces Studied by STM, Hyomen Kagaku 17 (1996) 516-522 [in Japanese].
DOI: 10.1380/jsssj.17.516
Google Scholar
[10]
Y. Kumagai, K. Namba, T. Komeda, Y. Nishioka, Formation of periodic step and terrace structure on Si(100) surface during annealing in hydrogen diluted with inert gas, J. Vac. Sci. Technol. A 16 (1998) 1775-1778.
DOI: 10.1116/1.581301
Google Scholar
[11]
K. Ohsawa, Y. Kogure, K. Araki, H. Isogai, R. Takeda, Y. Matsushita, R. Hasunuma, K. Yamabe, Uniform Growth of Ulltrathin SiO2 Films (2)--Roughness of Thermal Oxide Grown on Si(100) and Si(110) Surfaces, Ext. Abstr. (55th Spring Meet 2008), Japan Society of Applied Physics and Related Societies, 27a-X-4, p.837.
Google Scholar
[12]
K. Araki, H. Isogai, R. Takeda, K. Izunome, Y. Matsushita, N. Takahashi, X. Zhao, Effect of Reflow Oxidation on Si Surface Roughness during High-Temperature Annealing, Jpn. J. Appl. Phys. 48 (2009) 06FE05-1-06FE05-4.
DOI: 10.1143/jjap.48.06fe05
Google Scholar
[13]
N. Araki, Influence of Electrostatic Charge on Recombination Lifetime and Native Oxide Growth on HF-Treated Silicon Wafers, Jpn. J. Appl. Phys. 48 (2009) 011201-1-011201-8.
DOI: 10.1143/jjap.48.011201
Google Scholar
[14]
K. Araki, H. Isogai, R. Takeda, K. Izunome, Y. Matsushita, X. Zhao, Effect of Hydrogen Termination on Surface Roughness Variation of Si(110) by Reflow Oxidation during High-Temperature Ar Annealing, Jpn. J. Appl. Phys. 49 (2010).
DOI: 10.1143/jjap.49.085701
Google Scholar
[15]
K. Araki, H. Isogai, R. Takeda, K. Izunome, X. Zhao, Variation in Si(100) surface roughness caused by H-termination during high-temperature Ar annealing, Journal of Crystal Growth 318 (2011) 84-88.
DOI: 10.1016/j.jcrysgro.2010.11.015
Google Scholar
[16]
Y. Kimura, M. Niwano, INITIAL STAGE OF ETCHING OF SI ELECTRODE SURFACES INVESTIGATED BY SURFACE INFRARED SPECTROSCOPY Electrochem. Soc. Proc. 2000-25 (2001) pp.82-89.
Google Scholar
[17]
J. Kuge, M. Terashi, M. Niwano, In-situ IR study of hydrogen adsorption on Si surface, IEICE Tech. Rep. SDM 97 (1997) 25-30 [in Japanese].
Google Scholar
[18]
T. Fujii, M. Tanabe, Measurement of Film Thickness with XPS, Shimadzu Hyoron 47 (1990) 89 [in Japanese].
Google Scholar
[19]
M. Suemitsu, Y. Enta, Y. Miyanishi, Y. Takegawa, M. Miyamoto, Transition from random to island growth mode during Si(100)-(2×1) dry oxidation and its description with autocatalytic reaction model, Appl. Sur. Sci. 162-163 (2000) 293-298.
DOI: 10.1016/s0169-4332(00)00206-3
Google Scholar
[20]
H. Watanabe, K. Kato, T. Uda, K. Fujita, M. Ichikawa, T. Kawamura, K. Terakura, Kinetics of Initial Layer-by-Layer Oxidation of Si(001) Surfaces, Phys. Rev. Lett, 80 (1998) 345-348.
DOI: 10.1103/physrevlett.80.345
Google Scholar
[21]
H. Akahori, K. Nii, K. Tsukamoto, A. Teramoto, T. Ohmi, Control of Native Oxide Growth on Silicon Surface, IEICE Tech. Rep. SDM 187 (2004) 23-28 [in Japanese].
Google Scholar
[22]
H. Habuka, H. Tsunoda, M. Mayusumi, N. Tate, M. Katayama, Roughness of silicon surface heated in hydrogen ambient, J. Electrochem. Soc. 142 (9) (1995) 3092-3097.
DOI: 10.1149/1.2048694
Google Scholar
[23]
B.M. Gallois, T.M. Besmann, M.W. Stott, Chemical etching of silicon (100) by hydrogen, J. Am. Ceram. Soc. 77 (11) (1994) 2949-2952.
DOI: 10.1111/j.1151-2916.1994.tb04529.x
Google Scholar
[24]
T. Bauer, A. Ehlert, H. Franke, S. Weizbauer, Etching of silicon, Shirikon no kagaku (Science of silicon), Realize, Tokyo, 1996, pp.283-293.
Google Scholar
[25]
M. Suemitsu, A. Kato, H. Togashi, A. Kanno, Y. Yamamoto, Y. Teraoka, A. Yoshigoe, Y. Narita, Y. Enta, Real-Time Observation of Initial Thermal Oxidation on Si(110)-16 × 2 Surfaces by O 1s Photoemission Spectroscopy Using Synchrotron Radiation, Jpn. J. Appl. Phys. 46 (2007).
DOI: 10.1143/jjap.46.1888
Google Scholar