Positron Probing of Vacancy Volume of Thermally Stable Deep Donors Produced with 15 MeV Protons in n-FZ-Si:P Crystals

Article Preview

Abstract:

The free volume of the thermally stable vacancy center in n-FZ-Si:P has been probed by positrons. The defects were produced with 15 MeV protons, and then the irradiated material was subjected to the isochronal annealing. The positron lifetime has been determined over the temperature range ~ 30 K – 300 K; the samples-satellites have been characterized by Hall effect measurements. The microstructure of the center involves, at least, one atom of phosphorus and it manifests itself as a deep donor. The center is singly negatively charged and the cascade phonon-assisted trapping of positron proceeds over the length characteristic of the point defect, l0 ~3.62 a. u. Obeying ~ T –3 law, the positron trapping cross section ranges 3∙10–12 cm2 (66K) to 2.5∙10–14 cm2 (266 K). The positron lifetimes ranging from ~240 ps to ~280 ps suggest that the atomic relaxation is directed inward towards the free volume of the deep donor involving, at least, two vacancies.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

317-322

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.V. Emtsev, A.M. Ivanov, V.V. Kozlovski, A.A. Lebedev, G.A. Oganesyan, N.B. Strokan, G. Wagner, Similarities and distinctions of defect production by fast electron and protonirradiation: moderatly doped silicon and silicon carbide of n-type, Fiz. Tekh. Poluprov. 46 (2012).

DOI: 10.1134/s1063782612040069

Google Scholar

[2] N. Yu. Arutyunov, M. Elsayed, R. Krause-Rehberg, V.V. Emtsev, G.A. Oganesyan, V.V. Kozlovski, Positron annihilation on defects in silicon irradiated with 15 MeV protons, J. Phys.: Condens. Matter 25 (2013) 035801–035828.

DOI: 10.1088/0953-8984/25/3/035801

Google Scholar

[3] V.V. Emtsev, T.V. Mashovets, Impurities and Point Defects in Semiconductors, first ed., Radio i Svyaz', Moscow, 1981. [in Russian].

Google Scholar

[4] W. Brandt, Positron dynamics in solids, Appl. Phys. 5 (1974) 1–23.

Google Scholar

[5] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, first ed., Springer-Verlag, Berlin, (1999).

DOI: 10.1007/978-3-662-03893-2_3

Google Scholar

[6] M. Hakala, M.J. Puska, R.M. Nieminen, Momentum distributions of electron-positron pairs annihilating at vacancy clusters in Si, Phys. Rev. B 57 (1998) 7621–7627.

DOI: 10.1103/physrevb.57.7621

Google Scholar

[7] L. Palmetshofer, J. Reisinger, Defect levels in H+, D+, and He+ bombarded silicon, J. Appl. Phys. 72 (1992) 2167–2173.

DOI: 10.1063/1.351606

Google Scholar

[8] G. Davies, S. Hayama, L. Murin, R. Krause-Rehberg, V. Bondarenko, A. Sengupta, C. Davia, A. Karpenko, Radiation damage in silicon exposed to high-energy protons, Phys. Rev. B 73 (2006) 165202–16210.

DOI: 10.1103/physrevb.73.165202

Google Scholar

[9] T.E.M. Staab, A. Sieck, M. Haugk, M.J. Puska, Th. Frauenheim, H.S. Leipner, Stability of large vacancy clusters in silicon, Phys. Rev. B 65 (2002) 115210–115221.

DOI: 10.1103/physrevb.65.115210

Google Scholar

[10] T. E. M. Staab, M. Haugk, A. Sieck, T. Frauenheim, H. S. Leipner, Magic number vacancy aggregates in Si and GaAs structure and positron lifetime studies, Physica B 273–274 (1999) 501–504.

DOI: 10.1016/s0921-4526(99)00537-2

Google Scholar

[11] D. V. Makhov, L. J. Lewis, Stable fourfold configurations for small vacancy clusters in silicon from ab initio calculations, Phys. Rev. Lett. 92 (2004) 255504–255508.

DOI: 10.1103/physrevlett.92.255504

Google Scholar

[12] J. Kuriplach, A. L. Morales, C. Dauwe, D. Segers, M. Sob, Vacancies and vacancy-oxygen complexes in silicon: positron annihilation with core electrons, Phys. Rev. B 58 (1998) 10475–1483.

DOI: 10.1103/physrevb.58.10475

Google Scholar

[13] V.N. Abakumov, V. Perel, I.N. Yassievitch, Capture of carriers by attractive centers in semiconductors (review), Sov. Phys. Semicond. 12 (1978)1–28.

Google Scholar