Radiation Damage of Carrier Lifetime and Conductivity in Sn and Pb Doped n-Si

Article Preview

Abstract:

The impact of Sn on the degradation of the nonequilibrium charge carriers lifetime (τ) and the change of free electrons concentration (n) in γ- or electron irradiated Czochralski (Cz) n-Si has been studied. It is shown that in some cases the low-resistivity Sn doped n-Si (n-Si:Sn) can be considered as a material with enhancement radiation tolerance. In this material the lifetime damage factor (kτ) is in several times smaller compared to undoped n-Si while the conductivity damage factor (kn) is close in both materials. We also compared the impact of Sn, Pb and Sn+Pb. It is found that the radiation damage of the carrier lifetime and the conductivity in n-Si:Pb is slightly smaller than in undoped n-Si and in n-Si:Sn+Pb is the same as in n-Si:Sn.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

323-328

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Brelot, Tin as of vacancy trap of silicon at room temperature, IEEE Trans. Nucl. Sci. 19 (1972) 220-223.

DOI: 10.1109/tns.1972.4326836

Google Scholar

[2] C. Clays, E. Simoen, V. B. Neimash, A. Kraitchinskii, M. Kra'sko, O. Puzenko, A. Blondeel, P. Clauws, Tin doping of silicon for controlling oxygen precipitation and radiation hardness, J. Electrochem. Soc. 148 (2001) G738-G745.

DOI: 10.1149/1.1417558

Google Scholar

[3] A. Chroneos, C. A. Londos, E. N. Sgourou, P. Pochet, Point defect engineering strategies to suppress A-center formation in silicon, Appl. Phys. Lett. 99 (2011) 241901.

DOI: 10.1063/1.3666226

Google Scholar

[4] C. A. Londos, D. Aliprantis, E. N. Sgourou, A. Chroneos, P. Pochet, Formation and evolution of oxygen-vacancy clusters in lead and tin doped silicon, J. Appl. Phys. 111 (2012) 123508.

DOI: 10.1063/1.4729573

Google Scholar

[5] M. M. Kra'sko, Influence of tin impurity on recombination characteristics in γ-irradiated n-Si, Ukr. J. Phys. 57 (2012) 1162-1168.

Google Scholar

[6] Yu. M. Dobrovinskii, M. G. Sosnin, V. M. Tsmots', V. I. Shakhovtsov, V. L. Shindich, Impact of tin impurity on accumulation of radiation defects in n-Si, Sov. Phys. Semicond. 22 (1988) 727.

Google Scholar

[7] E. Simoen, C. Clays, A. M. Kraitchinskii, M. M. Kra'sko, V. B. Neimash, L. I. Shpinar, Radiation defects and carrier lifetime in tin-doped n-type silicon, Sol. Stat. Phenom 82-84 (2002) 425-430.

DOI: 10.4028/www.scientific.net/ssp.82-84.425

Google Scholar

[8] M.M. Kra'sko, Influence of tin impurity on degradation of conductivity in electron-irradiated n-Si, Ukr. J. Phys. 58 (2013) 243-248.

Google Scholar

[9] M. L. David, E. Simoen, C. Clays, V. B. Neimash, M. Kra'sko, A. Kraitchinskii, V. Voytovych, A. Kabaldin, J. F. Barbot, Electrically active defects in irradiated n-type Czochralski silicon doped with group IV impurities, J. Phys.: Condens. Matter 17 (2005).

DOI: 10.1088/0953-8984/17/22/013

Google Scholar

[10] V.B. Neimash, V.V. Voitovych, M. M. Kras'ko, A. M. Kraitchinskii, O. M. Kabaldin, Yu. V. Pavlovs'kyi, V. M. Tsmots', Formation of radiation-induced defects in n-Si with lead and carbon impurities, Ukr. J. Phys. 50 (2005) 1273-1277.

Google Scholar

[11] E. N. Sgourou, D. Timerkaeva, C. A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, P. Pochet, Impact of isovalent doping on the trapping of vacancy and interstitial related defects in Si, J. Appl. Phys. 113 (2013) 113506.

DOI: 10.1063/1.4795510

Google Scholar