Reduction of Structural Defects in Ge Epitaxially Grown on Nano-Structured Si Islands on SOI Substrate

Article Preview

Abstract:

One way to further increase performance and/or functionality of Si micro-and nanoelectronics is the integration of alternative semiconductors on silicon (Si). We studied the Ge/Si heterosystem with the aim to realize a Ge deposition free of misfit dislocations and with low content of other structural defects. Ge nanostructures were selectively grown by chemical vapor deposition on periodic Si nanoislands (dots and lines) on SOI substrate either directly or with a thin (about 10 nm) SiGe buffer layer. The strain state of the structures was measured by different laboratory-based x-ray diffraction techniques. It was found that a suited SiGe buffer improves the compliance of the Si compared to direct Ge deposition; plastic relaxation during growth can be prevented, and fully elastic relaxation of the structure can be achieved. Transmission electron microscopy confirms that the epitaxial growth of Ge on nanostructured Si is free of misfit dislocations.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

400-405

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, Nature Photonics 5 (2011) 416-419.

Google Scholar

[2] R. Chen, T. -T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, Nature Photonics 5 (2011) 170-175.

DOI: 10.1038/nphoton.2010.315

Google Scholar

[3] G. Capellini, G. Kozlowski, Y. Yamamoto, M. Lisker, C. Wenger, G. Niu, P. Zaumseil, B. Tillack, A. Ghrib, M. de Kersauson, M. El Kurdi, P. Boucaud, T. Schroeder, J. Appl. Phys. 113 (2013) 013513-013518.

DOI: 10.1063/1.4772781

Google Scholar

[4] M. J. Süess, R. Geiger, R.A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolanek, J. Faist, H. Sigg, Nature Photonics, published online 14 April 2013 doi: 10. 1038/nphoton. 2013. 67.

DOI: 10.1038/nphoton.2013.67

Google Scholar

[5] D. Zubia, S. D. Hersee, J. Appl. Phys. 85 (1999) 6492- 6496.

Google Scholar

[6] P. Zaumseil, Y. Yamamoto, A. Bauer, M. A. Schubert, and T. Schroeder, J. of Appl. Phys. 109 (2011) 023511-023518.

Google Scholar

[7] P. Zaumseil, Y. Yamamoto, J. Bauer, M. A. Schubert, J. Matejova, G. Kozlowski, T. Schroeder, B. Tillack, Solid State Phenomena 178-179 (2011) 43-49.

DOI: 10.4028/www.scientific.net/ssp.178-179.43

Google Scholar

[8] J. P. Dismukes, L. Ekstrom, R. J. Pfaff, J. Phys. Chem. 68 (1964) 3021-3027.

Google Scholar

[9] P. Zaumseil, G. Kozlowski, Y. Yamamoto, J. Bauer, M. A. Schubert, T. U. Schülli, B. Tillack, T. Schroeder, J. of Appl. Phys. 112 (2012) 043506-043510.

DOI: 10.1063/1.4748341

Google Scholar

[10] G. Kozlowski, P. Zaumseil, M. A. Schubert, Y. Yamamoto, J. Bauer, J. Matejova, T. Schulli, B. Tillack, and T. Schroeder, App. Phys. Letters 99 (2011) 141901-141903.

DOI: 10.1063/1.3644948

Google Scholar