High n-Type Doping in Ge for Optical Gain and Lasing

Article Preview

Abstract:

We review two ex-situ doping methods to achieve high n-type doping up to mid-1019 cm-3 in Ge-on-Si thin films. For both, delta doping and ion implantation, rapid thermal annealing is used to diffuse phosphorus from a diffusion source into the single crystal Ge layer. The diffusion mechanism is studied and we find that dopant enhanced diffusion in in-situ doped Ge attributes to the high doping level. A band gap narrowing effect is observed in highly doped n-type Ge through photoluminescence measurements by determining the photoluminescence peak shift. An empirical linear expression of the direct band gap narrowing shift with carrier concentration is proposed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

394-399

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling and J. Michel, An electrically pumped germanium laser, Optics Express, vol. 20, pp.11316-11320, (2012).

DOI: 10.1364/oe.20.011316

Google Scholar

[2] J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch and J. Michel, Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si, Optics Express, vol. 15, pp.11272-11277, (2007).

DOI: 10.1364/oe.15.011272

Google Scholar

[3] X. Sun, Ge-on-Si light-emitting materials and devices for silicon photonics, Ph. D., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering, Massachusetts Institute of Technology, (2009).

Google Scholar

[4] L. Ding, A. E. J. Lim, J. T. Y. Liow, M. B. Yu, and G. Q. Lo, Dependences of photoluminescence from P-implanted epitaxial Ge, Optics Express, vol. 20, pp.8228-8239, (2012).

DOI: 10.1364/oe.20.008228

Google Scholar

[5] R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Kimerling, and J. Michel, High active carrier concentration in n-type, thin film Ge using delta-doping, Opt. Mater. Express, vol. 2, pp.1462-1469, (2012).

DOI: 10.1364/ome.2.001462

Google Scholar

[6] R. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, Direct band gap narrowing in highly doped Ge, Applied Physics Letters, vol. 102, (2013).

DOI: 10.1063/1.4802199

Google Scholar

[7] Y. Cai, Z. Han, X. Wang, R. Camacho-Aguilera, L. C. Kimerling, J. Michel and J. Liu, Analysis of Threshold Current Behavior for Bulk and Quantum Well Germanium Laser Structures, Selected Topics in Quantum Electronics, IEEE Journal of, vol. 19, p.1901009, (2013).

DOI: 10.1109/jstqe.2013.2247573

Google Scholar

[8] R. W. Olesinski, N. Kanani, and G. J. Abbaschian, The Ge−P (Germanium-Phosphorus) system, Bulletin of Alloy Phase Diagrams, vol. 6, pp.262-266, (1985).

DOI: 10.1007/bf02880412

Google Scholar

[9] Y. Cai, R. Camacho-Aguilera, J. T. Bessette, L. C. Kimerling, and J. Michel, High phosphorous doped germanium: Dopant diffusion and modeling, Journal of Applied Physics, vol. 112, (2012).

DOI: 10.1063/1.4745020

Google Scholar

[10] P. Tsouroutas, D. Tsoukalas, I. Zergioti, N. Cherkashin, and A. Claverie, Modeling and experiments on diffusion and activation of phosphorus in germanium, Journal of Applied Physics, vol. 105, (2009).

DOI: 10.1063/1.3117485

Google Scholar

[11] S. Brotzmann and H. Bracht, Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium, Journal of Applied Physics, vol. 103, (2008).

DOI: 10.1063/1.2837103

Google Scholar

[12] C. Haas, Infrared absorption in heavily doped n-type Germanium, Physical Review, vol. 125, pp.1965-1971, (1962).

Google Scholar

[13] S. C. Jain and D. J. Roulston, A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers, Solid-State Electronics, vol. 34, pp.453-465, (1991).

DOI: 10.1016/0038-1101(91)90149-s

Google Scholar