Analysis of Inhomogeneous Dislocation Distribution in Multicrystalline Si

Article Preview

Abstract:

Grain boundaries and dislocations are major crystallographic defects in multicrystalline Si materials for solar cells. Heavily dislocated grains are detrimental to the photovoltaic performance. This paper attempts to clarify the origin of inhomogeneous defect distribution in multicrystalline Si. The impacts of crystal orientation and grain boundary were investigated. The crystal orientation gives an important geometrical effect in the possibility of initiating slip in a grain when subjected to stress. The presence of grain boundary can also affect dislocation distribution depending on boundary character.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

77-82

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Yang, G. H. Schwuttke, and T. F. Ciszek, Structural and electrical characterization of crystallographic defects in silicon ribbons, Journal of Crystal Growth 50 (1980) 301-310.

DOI: 10.1016/0022-0248(80)90252-3

Google Scholar

[2] Abdul-Azeez S. Al-Omar and Moustafa Y. Ghannam, Direct calculation of two-dimensional collection probability in pn junction solar cells, and study of grain-boundary recombination in polycrystalline silicon cells, J. Appl. Phys. 79 (1996).

DOI: 10.1063/1.361078

Google Scholar

[3] J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido, and S. Tsurekawa, Electron-beam-induced current study of grain boundaries in multicrystalline silicon, J. Appl. Phys. 96 (2004)5490-5495.

DOI: 10.1063/1.1797548

Google Scholar

[4] S. Nara, T. Sekiguchi, and J. Chen, High quality multicrystalline silicon grown by multi-stage solidification control method, Eur. Phys. J. Appl. Phys. 27 (2004) 389-392.

DOI: 10.1051/epjap:2004063

Google Scholar

[5] B. Wu, N. Stoddard, R. Ma, R. Clark, Bulk multicrystalline silicon for photovoltaic (PV) application, Journal of Crystal Growth 310 (2008) 2178-2184.

DOI: 10.1016/j.jcrysgro.2007.11.194

Google Scholar

[6] N. Usami, I. Takahashi, K. Kutsukake, K. Fujiwara, and K. Nakajima, Implementation of faceted dendrite growth on floating cast method to realize high-quality multicrystalline Si ingot for solar cells, J. Appl. Phys. 109 (2011) 083527-1-4.

DOI: 10.1063/1.3576108

Google Scholar

[7] C. Donolato, Modeling the effect of dislocations on the minority carrier diffusion length of a semiconductor, J. Appl. Phys. 84 (1998) 2656-2664.

DOI: 10.1063/1.368378

Google Scholar

[8] B. Sopori and W. Chen, Influence of distributed defects on the photoelectric characteristics of a large-area device, Journal of Crystal Growth 210 (2000) 375-378.

DOI: 10.1016/s0022-0248(99)00714-9

Google Scholar

[9] G. Stokkan, S. Riepe, O. Lohne and W. Warta, Spatially resolved modeling of the combined effect of dislocations and grain boundaries on minority carrier lifetime in multicrystalline silicon, J. Appl. Phys. 101 (2007) 053515-1-9.

DOI: 10.1063/1.2435815

Google Scholar

[10] N. Chen, S. Qiu, B. Liu, G. Du, G. Liu, and W. Sun, An optical microscopy study of dislocations in multicrystalline silicon grown by directional solidification method, Materials Science in Semiconductor Processing 13 (2010) 276-280.

DOI: 10.1016/j.mssp.2010.12.006

Google Scholar

[11] E. Schmid and W. Boas, Plasticity of Crystals, F. A. Hughes Co., London (1950).

Google Scholar

[12] G. J. Taylor, Plastic strain in metals, J. Inst. Metals 62 (1938) 307-324.

Google Scholar

[13] H. J. Bunge, Some applications of the Taylor theory of polycrystal plasticity, Kristall und Technik 5 (1970) 145-175.

DOI: 10.1002/crat.19700050112

Google Scholar

[14] V. Randle, The Measurement of Grain Boundary Geometry, Institute of Physics Publishing, Bristol, (1993).

Google Scholar

[15] Orientation Imaging Microscopy (OIMTM) EBSD Data Analysis Software, EDAX.

Google Scholar

[16] F. Secco d'Aragona, Dislocation etch for (100) planes in silicon, J. Electrochem. Soc. 119 (1972) 948-951.

DOI: 10.1149/1.2404374

Google Scholar

[17] T. Sekiguchi and K. Sumino, Quantitative electron-beam tester for defects in semiconductors (CL/EBIC/SDLTS system), Rev. Sci. Instrum. 66 (1995) 4277-4282.

DOI: 10.1063/1.1145382

Google Scholar

[18] J. Chen, T. Sekiguchi, R. Xie, P. Ahmet, T. Chikyo, D. Yang, S. Ito, and F. Yin, Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon, Scripta Materialia 52 (2005) 1211-1215.

DOI: 10.1016/j.scriptamat.2005.03.010

Google Scholar