[1]
K. Yang, G. H. Schwuttke, and T. F. Ciszek, Structural and electrical characterization of crystallographic defects in silicon ribbons, Journal of Crystal Growth 50 (1980) 301-310.
DOI: 10.1016/0022-0248(80)90252-3
Google Scholar
[2]
Abdul-Azeez S. Al-Omar and Moustafa Y. Ghannam, Direct calculation of two-dimensional collection probability in pn junction solar cells, and study of grain-boundary recombination in polycrystalline silicon cells, J. Appl. Phys. 79 (1996).
DOI: 10.1063/1.361078
Google Scholar
[3]
J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido, and S. Tsurekawa, Electron-beam-induced current study of grain boundaries in multicrystalline silicon, J. Appl. Phys. 96 (2004)5490-5495.
DOI: 10.1063/1.1797548
Google Scholar
[4]
S. Nara, T. Sekiguchi, and J. Chen, High quality multicrystalline silicon grown by multi-stage solidification control method, Eur. Phys. J. Appl. Phys. 27 (2004) 389-392.
DOI: 10.1051/epjap:2004063
Google Scholar
[5]
B. Wu, N. Stoddard, R. Ma, R. Clark, Bulk multicrystalline silicon for photovoltaic (PV) application, Journal of Crystal Growth 310 (2008) 2178-2184.
DOI: 10.1016/j.jcrysgro.2007.11.194
Google Scholar
[6]
N. Usami, I. Takahashi, K. Kutsukake, K. Fujiwara, and K. Nakajima, Implementation of faceted dendrite growth on floating cast method to realize high-quality multicrystalline Si ingot for solar cells, J. Appl. Phys. 109 (2011) 083527-1-4.
DOI: 10.1063/1.3576108
Google Scholar
[7]
C. Donolato, Modeling the effect of dislocations on the minority carrier diffusion length of a semiconductor, J. Appl. Phys. 84 (1998) 2656-2664.
DOI: 10.1063/1.368378
Google Scholar
[8]
B. Sopori and W. Chen, Influence of distributed defects on the photoelectric characteristics of a large-area device, Journal of Crystal Growth 210 (2000) 375-378.
DOI: 10.1016/s0022-0248(99)00714-9
Google Scholar
[9]
G. Stokkan, S. Riepe, O. Lohne and W. Warta, Spatially resolved modeling of the combined effect of dislocations and grain boundaries on minority carrier lifetime in multicrystalline silicon, J. Appl. Phys. 101 (2007) 053515-1-9.
DOI: 10.1063/1.2435815
Google Scholar
[10]
N. Chen, S. Qiu, B. Liu, G. Du, G. Liu, and W. Sun, An optical microscopy study of dislocations in multicrystalline silicon grown by directional solidification method, Materials Science in Semiconductor Processing 13 (2010) 276-280.
DOI: 10.1016/j.mssp.2010.12.006
Google Scholar
[11]
E. Schmid and W. Boas, Plasticity of Crystals, F. A. Hughes Co., London (1950).
Google Scholar
[12]
G. J. Taylor, Plastic strain in metals, J. Inst. Metals 62 (1938) 307-324.
Google Scholar
[13]
H. J. Bunge, Some applications of the Taylor theory of polycrystal plasticity, Kristall und Technik 5 (1970) 145-175.
DOI: 10.1002/crat.19700050112
Google Scholar
[14]
V. Randle, The Measurement of Grain Boundary Geometry, Institute of Physics Publishing, Bristol, (1993).
Google Scholar
[15]
Orientation Imaging Microscopy (OIMTM) EBSD Data Analysis Software, EDAX.
Google Scholar
[16]
F. Secco d'Aragona, Dislocation etch for (100) planes in silicon, J. Electrochem. Soc. 119 (1972) 948-951.
DOI: 10.1149/1.2404374
Google Scholar
[17]
T. Sekiguchi and K. Sumino, Quantitative electron-beam tester for defects in semiconductors (CL/EBIC/SDLTS system), Rev. Sci. Instrum. 66 (1995) 4277-4282.
DOI: 10.1063/1.1145382
Google Scholar
[18]
J. Chen, T. Sekiguchi, R. Xie, P. Ahmet, T. Chikyo, D. Yang, S. Ito, and F. Yin, Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon, Scripta Materialia 52 (2005) 1211-1215.
DOI: 10.1016/j.scriptamat.2005.03.010
Google Scholar