Progress in Cleaning and Wet Processing for Kesterite Thin Film Solar Cells

Article Preview

Abstract:

Copper indium gallium selenide/sulfide (CIGS) and copper zinc tin selenide/sulfide (CZTS) are two thin film photovoltaic materials with many similar properties. Therefore, three new processing steps – which are well-known to be beneficial for CIGS solar cell processing – are developed, optimized and implemented in CZTS solar cells. For all these novel processing steps an increase in minority carrier lifetime and cell conversion efficiency is measured, as compared to standard CZTS processing. The scientific explanation of these effects is very similar to its CIGS equivalent: the incorporation of alkali metals, ammonium sulfide surface cleaning, and Al2O3 surface passivation leads to electrical enhancement of the CZTS bulk, front surface and reduced front interface recombination, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 255)

Pages:

348-353

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] White paper for CIGS thin film solar cell technology, e. g. http: /www. solarpowerworldonline. com/wp-content/uploads/2016/01/CIGS-WhitePaper. pdf, retrieved June 6th (2016).

Google Scholar

[2] M.A. Green, K. Emery, Y. Hishikawa, W. Warta and E.D. Dunlop: Prog. Photovolt: Res. Appl. 24(1) (2016), p.3–11.

DOI: 10.1002/pip.2728

Google Scholar

[3] X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi and M. Green: Prog. Photovolt: Res. Appl. 24(6) (2016), p.879–898.

DOI: 10.1002/pip.2741

Google Scholar

[4] G. Brammertz, S. Oueslati, M. Buffière, J. Bekaert, H. El Anzeery, K. Ben Messaoud, S. Sahayaraj, T. Nuytten, C. Köble, M. Meuris and J. Poortmans: IEEE J. Photovoltaics 5(2) (2014), p.486–492.

DOI: 10.1109/jphotov.2014.2376053

Google Scholar

[5] G. Brammertz, M. Buffière, S. Oueslati, H. El Anzeery, K. Ben Messaoud, S. Sahayaraj, C. Köble, M. Meuris and J. Poortmans: Appl. Phys. Lett. 103 (2013) p.163904.

DOI: 10.1063/1.4826448

Google Scholar

[6] P.M.P. Salomé, H. Rodriguez-Alvarez and S. Sadewasser: Solar Energy Mater. Solar Cells 143 (2015), p.9–20.

DOI: 10.1016/j.solmat.2015.06.011

Google Scholar

[7] A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler and A.N. Tiwari: Nature Materials 12 (2013), p.1107–1111.

DOI: 10.1038/nmat3789

Google Scholar

[8] M. Buffière, A. -A. El Mel, N. Lenaers, G. Brammertz, A.E. Zaghi, M. Meuris and J. Poortmans: Adv. Energy Mater. 5 (2015), p.1401689.

DOI: 10.1002/aenm.201401689

Google Scholar

[9] B. Vermang, J.T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara and S. Sadewasser: IEEE J. Photovoltaics 4(6) (2014), p.1644–1649.

DOI: 10.1109/jphotov.2014.2350696

Google Scholar

[10] Y. Fu, N.A. Allsop, S.E. Gledhill, T. Köhler, M. Krüger, R. Sáez-Araoz, U. Blöck, M. Ch. Lux-Steiner and C. -H. Fischer: Adv. Energy Mater. 1(4) (2011), p.561–564.

DOI: 10.1002/aenm.201100146

Google Scholar

[11] P. Reinhard, B. Bissig, F. Pianezzi, H. Hagendorfer, G. Sozzi, R. Menozzi, C. Gretener, S. Nishiwaki, S. Buecheler and A.N. Tiwari: Nano Lett. 15(5) (2015), p.3334–3340.

DOI: 10.1021/acs.nanolett.5b00584

Google Scholar

[12] A. Mule, B. Vermang, M. Sylvester, G. Brammertz, S. Ranjbar, T. Schnabel, N. Gampa, M. Meuris and J. Poortmans: Thin Solid Films XX (2016), under review.

DOI: 10.1016/j.tsf.2016.11.027

Google Scholar

[13] M. Sylvester, G. Brammertz, B. Vermang, M. Meuris, J. Vleugels and J. Poortmans: Thin Solid Films XX (2016), under review.

Google Scholar

[14] M.E. Erkan, V. Chawla and M.A. Scarpulla: J. Appl. Phys. 119 (2016), p.194504.

Google Scholar

[15] Y.S. Lee, T. Gershon, T.K. Todorov, W. Wang, M.T. Winkler, M. Hopstaken, O. Gunawan and J. Kim: Adv. Energy Mater. XX (2016), early view, DOI: 10. 1002/aenm. 201600198.

Google Scholar

[16] W. Wu, Y. Cao, J.V. Caspar, Q. Guo, L.K. Johnson, R.S. Mclean, I. Malajovich and K.R. Choudhury: Appl. Phys. Lett. 105 (2014), p.042108.

Google Scholar

[17] B. Vermang, Y. Ren, O. Donzel-Gargand, C. Frisk, J. Joel, P. Salomé, J. Borme, S. Sadewasser, C. Platzer-Björkman and M. Edoff: IEEE J. Photovoltaics 6(1) (2015), p.332–336.

DOI: 10.1109/jphotov.2015.2496864

Google Scholar

[18] S.M. George: Chem. Rev. 110 (1) (2010), p.111–131.

Google Scholar

[19] M. Buffière, G. Brammertz, S. Sahayaraj, M. Batuk, S. Khelifi, D. Mangin, A. -A. El Mel, L. Arzel, J. Hadermann, M. Meuris and J. Poortmans: ACS Appl. Mater. Interfaces 7(27) (2015), p.14690–14698.

DOI: 10.1021/acsami.5b02122

Google Scholar

[20] A. Kanevce, D.H. Levi and D. Kuciauskas: Prog. Photovolt: Res. Appl. 22 (2014), p.1138–1146.

Google Scholar

[21] S. Oueslati, G. Brammertz, M. Buffière, H. El Anzeery, O. Touayar, C. Köble, J. Bekaert, M. Meuris and J. Poortmans: Thin Solid Films 582 (2015), p.224–228.

DOI: 10.1016/j.tsf.2014.10.052

Google Scholar