[1]
A.V. Dub, S.V. Goshkoderya, S.V. Efimov et al., Study and management of non-metallic inclusions in low alloyed steel pipe, Ferrous metals. Non-ferrous metals, (2005) 30-35.
Google Scholar
[2]
K.W. Andrews, Stress fields around inclusions and their relation to mechanical properties, JISI, 210 (1972) 246-253.
Google Scholar
[3]
A.Y. Dynin, S.S. Melchin, I.V. Rjabchikov, R.G. Usmanov, Device for the continuous casting alloy, RU Patent 2101131.
Google Scholar
[4]
A.V. Dub, V.P. Luzgin, A.I. Vostryakov et al., Effect of oxidation on the formation of inclusions in low alloyed steels, processed with calcium. The study began manufacturing processes and their influence on the final properties of the product, Coll. MISA scientific papers, Metallurgy, Moscow, (1990).
Google Scholar
[5]
A.P. Babichev, N.A. Grandma, A.M. Bratkovsky, Physical quantities: Directory, Energoatomisdat, Moscow, (1991).
Google Scholar
[6]
The new directory chemist and technologist. Processes and devices of chemical technologies. Part II, NPO "Professional, St. Peterburg, (2006).
Google Scholar
[7]
N.I. Gelperin, G.A. Nosov, Basic techniques of melt crystallization, Chemistry, Moscow, (1975).
Google Scholar
[8]
V.J. Anosov, S.A. Pogodin, The basic principles of physical and chemical analysis, Publishing AN USSR, Moscow, (1947).
Google Scholar
[9]
I. Bartel, Crystallization from melts: Handbook, Metallurgy, Moscow, (1987).
Google Scholar
[10]
H. Wang, Basic formulas and data on heat transfer for Engineers. Directory, Atomizdat, Moscow, (1979).
Google Scholar
[11]
I.V. Lebedev, Increasing the assimilative capacity of the molten slag in the tundish during the continuous casting of carbon steels, aluminum, Central Research Institute of Ferrous Metallurgy im. I.P. Bardina, Moscow, (2014).
Google Scholar
[12]
S.M. Skuratov, V.P. Kolesov, A.F. Vorobyov, Thermochemistry, Moscow, (1964).
Google Scholar
[13]
I.H. Israphilov, D.I. Israphilov, D.A. Bashmakov, A.T. Galiakbarov, A.D. Samigullin, Calculation of thermal processes in bottom electrode, CES, 8 (2015) 13-20.
DOI: 10.12988/ces.2015.48110
Google Scholar
[14]
I.H. Israphilov, D.I. Israphilov, D.A. Bashmakov, A.T. Galiakbarov, A.D. Samigullin, Numerical analysis of temperature distribution in bottom electrode of DC arc furnace in process, CES, 7 (2014) 1483-1491.
DOI: 10.12988/ces.2014.48109
Google Scholar
[15]
I.K. Israfilov, A.T. Galiakbarov, D.I. Israfilov, The analysis of the bottom electrode thermal streams during work process in a melting furnace, IOP Conf. Ser.: Mater. Sci. Eng. 69 (2014) 012015.
DOI: 10.1088/1757-899x/69/1/012015
Google Scholar
[16]
J. Timmermans, The physicochemical constants of binary systems in concentrated solutions, Interscience Publishers Inc., New York, (1959).
Google Scholar
[17]
J.C. Smith, Higher Aliphatic Compaunds. Part 2. The systems Hexadecyl Iodide Octadecyl Iodide and Hexadecane, Octadecane, J. Chem. Soc., 257 (1932).
DOI: 10.1039/jr9320000737
Google Scholar
[18]
Yu.P. Kuzmenko, B.A. Kasymbekov, S.K. Myasnikov, Phase equilibrium liquid - solid body in the system n-hexadecane - n-octadecane, USSR, Moscow, (1984).
Google Scholar
[19]
V.M. Kravchenko, Triple system benzene-toluene-naphthalene, Journal. nat. chemistry, 24 (1950) 1033-1056.
Google Scholar
[20]
A.M. Zakharov, State diagrams quaternary systems, Metallurgy, Moscow, (1964).
Google Scholar